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Abstract

We consider the approximate sparse recovery problem in Wireless Sensor Networks

(WSNs) using Compressed Sensing/Compressive Sampling (CS). The goal is to recover

the n-dimensional data values by querying only m � n sensors based on some linear

projection of sensor readings. To solve this problem, a two-tiered sampling model is

considered and a novel distributed compressive sparse sampling (DCSS) algorithm is

proposed based on sparse binary CS measurement matrix. In the two-tiered sampling

model, each sensor first samples the environment independently. Then the fusion center

(FC), acting as a pseudo-sensor, samples the sensor network to select a subset of sensors

(m out of n) that directly respond to the FC for data recovery purpose. The sparse binary

matrix is designed using the unbalanced expander graph which achieves the state-of-

the-art performance for CS schemes. This binary matrix can be interpreted as a sensor

selection matrix whose fairness is analyzed. Extensive experiments on both synthetic

and real data set show that by querying only the minimum amount of m sensors using

the DCSS algorithm, the CS recovery accuracy can be as good as those using dense

measurement matrices (e.g., Gaussian, Fourier Scrambles). We also show that the sparse

binary measurement matrix works well on compressible data which has the closest recovery

result to the known best k-term approximation. The recovery is robust against noisy

measurements. The sparsity and binary properties of the measurement matrix contribute,

to a great extent, the reduction of the in-network communication cost as well as the

computational burden.
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Chapter 1

Introduction

This thesis explores the application of Compressed Sensing/Compressive Sampling (CS)

to the sensor selection for data recovery problem in Wireless Sensor Networks (WSNs).

In Section 1.1, we will outline our mainly contribution in solving this problem. Next, in

Section 1.2 we briefly review the general sampling model for data recovery and a specific

two-tiered sampling model will be described later in Chapter 2. In Section 1.3 we discuss

the applications of data recovery in WSN, the same problem has also been proposed in [44]

1.1 General Sampling model

The Shannon/Nyquist sampling theorem tells us that in order to not lose information when

uniformly sampling a signal we must sample at least two times faster than its bandwidth.

Consider a real-valued, finite-length, one-dimensional, discrete-time signal x, which we

view as an n × 1 column vector in Rn with elements x[n], n = 1, 2, · · · , n. We treat

an image or higher-dimensional data by vectorizing it into a long one-dimensional vector.

More often, people use transform coding in data acquisition systems like digital cameras

where the number of samples is high but the signals are compressible. In this framework,

we acquire the full n−sample signal x; compute the complete set of transform coefficients

{si} via s = ΨTx; locate the k largest coefficients and discard the (n − k) smallest

coefficients; and encode the k values and locations of the largest coefficients. (In practice,
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we also convert the values and locations to digital bits.) Unfortunately, the sample-then-

compress framework suffers from three inherent inefficiencies: First, we must start with a

potentially large number of samples n even if the ultimate desired k is small. Second, the

encoder must compute all of the k transform coefficients {si}, even though it will discard

all but k of them. Third, the encoder faces the overhead of encoding the locations of the

large coefficients.

Instead of thinking in the traditional way, compressive sensing promises to recover

the high-dimensional signals exactly or accurately, by using a much smaller number of

non-adaptive linear samplings or measurements. In general, signals in this context are

represented by vectors from linear spaces, many of which in the applications will represent

images or other objects. However, the fundamental theorem of linear algebra,”as many

equations as unknowns,” tells us that it is not possible to reconstruct a unique signal from an

incomplete set of linear measurements. As we said before, many signals such as real-world

images or audio signals are often sparse or compressible over some basis, such as smooth

signals or signals whose variations are bounded. This opens the room for recovering these

signals accurately or even exactly from incomplete linear measurements. Some background

on Compressed Sensing will be address in Chapter 2.

1.2 Motivations

In a typical wireless sensor network measuring an environmental reading, each with

finite battery lifetime and thus limited computing and communication capabilities. In

order to gain an understanding of the environment, information processing among the

sensor nodes is of ultimate important. How can we collaboratively communicating within

the network and efficiently encoding and sending the data with constrained energy and

limited bandwidth? Or in other words, how can we select subset of sensors for the

data approximation in WSNs. In collaborative processing, most of time the functions

of data (i.e., sums, averages, mean etc) are communicated. The limited bandwidth and
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computational capabilities mandate that there should be a trade-off between how much

data communicated and the accuracy of the data approximation.

1.3 Contribution

The main contributions of this paper are as follows:

Firstly, a two-tiered sampling model is designed where each individual sensor first

samples the environment to obtain sensor readings and then the Fusion Center (FC), acting

as a pseudo-sensor, samples the sensor network based on compressive sampling, to obtain

a subset of sensors (m out of n) for sparse recovery. Thus the traditional problem that

sensing will cause data deluge is alleviated.

Secondly, a Distributed Compressive Sparse Sampling (DCSS) algorithm that effi-

ciently selects and aggregates the sensor reading is developed. FC chooses m designated

sensors within the network based on the CS measurement matrix, which provides a

necessary number ofmmeasurements for accurate data recovery. The distributed algorithm

enjoys the sparsity of the measurement matrix that reduces the communication cost and

relieves the computational burden of the network.

Lastly, a sparse binary matrix based on the unbalanced expander graph is proposed.

Although such measurement matrix has been developed for network streaming and only

recently in compressed sensing [49], this paper is the first attempt in designing the sparse

binary matrix with a fixed number of 1’s in each column of the measurement matrix such

that it can be applied in WSNs for data recovery purpose. Theoretical analysis shows the

guaranteed sparse recovery result.

1.4 Related Work

Data aggregation has been put forward as an essential paradigm for wireless routing in

sensor networks. An important topic addressed by the WSN community over the last

several years has been in-network aggregation. The notion is that cumulants, moments,
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or summaries can be computed directly in the network by sensor nodes endowed with

computational power, thus avoiding the expensive transmission of all sensor data to the

FC [52, 9, 51, 39, 72]. For example, [55] used a tree-like structure to disseminate queries

and collect results back to the FC. Various algorithmic techniques have been proposed to

allow efficient aggregation without increasing the message size [27, 28]. While most of

the existing work assumes that the goal of the aggregation is to accumulate data from all

the network nodes, [43] studied the problem of aggregating data from a sparse set of nodes

in WSNs. A protocol that simultaneously integrates the data aggregation process with the

sparse tree formation process was designed where data aggregation can be conducted by

having the data flow up the tree and aggregated in the standard way. Our goal in this

paper is to aggregate data in-network with a minimum number of sensor nodes for accurate

recovery. Each node knows locally whether it needs to be aggregated or not based on the

designed sparse binary matrix. An interesting aspect of our method is that we can actually

integrate the data aggregation process with the sensor subset selection process so that they

both happen simultaneously.

An overview of several sparse random matrices and algorithms for sparse recovery

problems can be found in [45]. The majority of existing work on sparse recovery in

wireless sensor networks is based on the sparse random projection matrix Φ designed in

[53]. In [67], the authors showed that this kind of random matrices can be successfully

adopted to approximate functions of data based on their distributed sensing algorithms.

The same matrix was also proposed in [59] for signal approximation to facilitate energy

neutral operation in rechargeable WSNs. In the area of DNA Microarrays, sparse matrices

were used for probe design and CS signal recovery. [57] proposed an algorithm called

sparse matrix preprocessing (SMPP), which uses low-density parity check (LDPC) code

generator matrices. The LDPC-like matrices are very sparse, with constant number of

1’s in each row and column. The original spare signal can be recovered then by linear

programming. The Compressive Sensing Microarrays (CSM) in [30] designed the probes

in such a way that they mimic the Hamming code and signal recovery is performed

through belief propagation. Also [31] established a mathematical connection between
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channel coding and compressed sensing, where the binary linear channel code can be seen

as good zero-one measurement matrix, thus translating the performance guarantees from

information codes to CS. Wu et al. [69] employed a permutation-based multi-dimensional

sparse measurement matrix, which is composed of several sub-matrices, each consisting of

a block-diagonal matrix and a random permutation matrix. It has been shown that such a

measurement matrix brings some useful features to the measurement symbols.

There is also a rich literature in distributed compressive sensing [5, 38, 2, 67]. For

example, [5] defined a joint sparsity model on the data, and exploited both intra- and inter-

signal correlation structures to reduce communications from the sensors to the FC. [2]

required no prior knowledge about the sensed data and used distributed matched source-

channel communication to deliver random projections of the sensor network data to the

FC. Both [5] and [2] assume the scenario where all sensors communicate directly to a

central FC without any in-network communication. [67] proposed that every sensor in

the field computes and stores sparse random projections in a decentralized manner and

sends its aggregates randomly within the network. The FC can then query any number

of sensors to achieve refinable approximation. Compared to these existing works, our

approach utilizes in-network communications and uses sparse binary projections for data

aggregates, which reduces the data communication cost and storage burden. In addition,

the projected data is only aggregated to them designated sensors which, in contrast to [67],

reduces communication overhead as well as facilitates easy measurement aggregation.

1.5 Outline of the Thesis

The outline of the thesis is as follows:

In chapter 1, we review the general sampling model for signal processing and introduce

the data recovery problems in the application of Wireless Sensor Networks. We also

address the motivation of this thesis and related works that have been done in compressed

sensing, sparse measurement matrices design, and distributed data recovery in WSNs. At

the end of the chapter, we give the synopsis of the thesis.
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In chapter 2, we review some background knowledge on Compressed Sensing contains

the theories of measurement matrices and different variant of recovery algorithms.

In chapter 3, we briefly discuss the problem setup throughout the thesis. We first

introduce the two-tiered sampling model we will use in this thesis. We also review two

classes of sparse signals, namely exact sparse signals and compressible signals, the problem

of sparse recovery will be addressed here too.

In chapter 4, we investigate the connection between graphs and sparse measurement

matrices by first introducing the definition and theoretic results of bipartite graphs and

expander graphs, we then give proves showing that the results generated in graph codes

can be adjusted to fit the compressed sensing technique. Finally, we presented a sparse

measurement matrices design procedure using the adjacency matrix of the expander graph.

In Chapter 5, we propose the distributed compressive sparse sampling (DCSS)

algorithm. Some practical implementation issues and the fairness of the sensor selection

problem are also discussed.

In Chapter 6, we conduct various settings of experiments and tested the sparse binary

matrix and our distributed algorithms on both synthetic and real data sets. The results

shows the sparse binary matrix can do well on both exact sparse signal and compressible

signals compared to traditional dense Gaussian and Fourier matrices.

Finally, in Chapter 7, we conclude our thesis and provide some future works.
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Chapter 2

Background on Compressed Sensing

The basic CS problem is to estimate a vector x ∈ Rn from a set of linear measurements

y = Φx, where y ∈ Rm and Φ is a known m × n matrix. This method greatly reduces

the number of digital samples required to reconstruct from highly incomplete information,

typically well below the number expected from the requirements of the Shannon/Nyquist

sampling theorem. The key idea in CS is that if the signal x is constrained to be sparse or

approximately sparse, then it is possible to recover x even when m � n. More precisely,

one of the basic results in CS is that there exist matrices Φ with only m = O(k log(n/k))

rows such that for all k-sparse x, i.e., all x with at most k nonzero components, we

can recover x exactly from Φx. Furthermore, [32] and [18, 19] observed that recovery

can be accomplished in polynomial time via linear programming (LP), provided that the

measurement matrix Φ satisfies certain technical conditions. This chapter gives a basic

introduction in compressive sensing with current theories and properties.

2.1 Theory of Compressed Sensing

Without loss of generality, we consider a real-valued, finite-length, one-dimensional,

discrete-time signal x ,which can be viewed as an n × 1 column vector in Rn. Since any

signal in Rn can be represented in terms of a basis of n× 1 vectors {ψ}ni=1. For simplicity,

7



assume that the basis is orthonormal. Using the n × n basis matrix Ψ = [ψ1|ψ2 · · · |ψn]

with the vector ψi as columns, the signal x can be expressed as [4]

x =
n∑
i=1

siψi or x = ψs (2.1)

where s is the n×1 column vector of weighting coefficients. si = ψTi x . Clearly, x and

s are equivalent representations of the signal, with x in the time or space domain and s in

the ψ domain.

To begin with, we define that the signal is k-sparse if it is a linear combination of only k

basis vectors, that is, only k of the si coefficients in (2.1) are nonzero and (n− k) are zero.

We call the set of indices corresponding to the nonzero entries the support of x and denote

it by supp(x). The set of all k-sparse signals is the union of the

 n

k

, k-dimensional

subspaces aligned with the coordinate axes in Rn. We denote this union of subspaces by∑
k. The case of interest is when k � n. The signal is compressible if the representation

in Equation (2.1) has just a few large coefficients and many small coefficients.

Now we will begin the CS problem statement in the following subsections.

2.1.1 RIP Property in `2-norm

CS integrates the signal acquisition and compression steps into a single process. In CS

we do not acquire x directly but rather acquire m < n linear measurements y = Φx

using an m × n measurement matrix Φ. We then recover x by exploiting its sparsity or

compressibility. Our goal is to pushm as close as possible to k in order to perform as much

signal ”compression” during acquisition as possible.

The measurement matrix Φ is very important since it largely affects the process of

sampling the system as well as determines how good the recovery is. We could also

consider the measurement matrix as a sampling operator that preserves some suitable
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conditions under which the signal can be recovered exactly or with high probability. Recent

years, a lot of good papers have already advanced the research on this topic [14, 3].

One of the most commonly used conditions for the measurement matrix is the

Restricted Isometry Property (RIP) introduced by Candes and Tao [23]. RIP essentially

requires that every subset of column of Φ with certain cardinality approximately behaves

like an orthonormal system. For an m × n matrix Φ and an integer k, 1 � k � p, the

measurement matrix Φ should satisfy the restricted isometry property.

Definition: An m × n matrix Φ has the k-restricted isometry property (k-RIP) with

constant δk > 0 if, for all x ∈
∑

k,

(1− δk)‖x‖22 ≤ ||Φx||22 ≤ (1 + δk)‖x‖22 (2.2)

In other words, the k-RIP ensures that all submatrices of Φ of size m × k are close

to an isometry, and therefore distance (and information) preserving. Practical recovery

algorithms typically require that Φ have a slightly stronger 2k-RIP, 3k-RIP, or higher-

order RIP in order to preserve distances between k-sparse vectors (which are 2k-sparse

in general), three-way sums of k-sparse vectors (which are 3k-sparse in general), and other

higher-order structures.

Other measurement matrix conditions have been proposed for exactly recovery, like

Donoho and Tanner’s K-neighborly polytopes [36], expansion/randomness extraction

property by Xu, et al. [71].

It is important to note that RIP conditions are difficult to verify for a given matrix

Φ. A widely used technique for avoiding checking the RIP directly is to generate the

matrix randomly and to show that the resulting random matrix satisfies the RIP with

high probability using the well-known Johnson-Lindenstrauss Lemma. See, for example,

Baraniuk, et al. [3]. This is typically done for conditions involving only the restricted

isometry constant δk.
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2.1.2 RIP Property in `1-norm

While most of the researches have been focusing on the dense matrices satisfy RIP property

in `2-norm. The measurement matrix Φ that is sparse and often binary has also gained some

attention. In 2008, Berinde et al [6] showed that the adjacency matrix of an expander graph

satisfies a very similar property, called the restricted isometry property in the `1-norm (the

so-called RIP-1 property). They used this property to show that exact recovery by basis

pursuit is still possible.

2.2 Sparse Recovery Algorithms

Sparse representations have attracted a great deal of attention in signal processing and

information theory [20, 15, 33, 34]. Since there are infinitely many signal coefficient

vectors x′ that produce the same set of compressive measurements y = Φx, to recover

the ”right” signal we exploit our a priori knowledge of its sparsity or compressibility.

A naive approach for solving this problem is to seek the sparsest x that agrees with the

measurements y:

x̂ = arg min
x′
||x||0 s.t. y = Φx′ (2.3)

where the l0 norm of a vector counts its number of nonzero entries. And essentially the

l0 minimization is to find the sparest solution in the feasible set of possible solutions. While

this optimization can recover a k-sparse signal from just m = 2k compressive measure-

ments, it is unfortunately a combinatorial, NP-hard problem and thus is computationally

infeasible; furthermore, the recovery is not stable in the presence of noise. We practically

consider a similar program in the l1 norm which goes by the name of Basis Pursuit [26].

x̂ = arg min
x′
||x||1 s.t. y = Φx′ (2.4)
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where we recall that ||x||l1 =
∑

i |xi|. l1 minimization can be viewed as a convex

relaxation of l0 minimization. A series of beautiful articles [63, 46, 35, 11] showed

exact equivalence between the two optimization programs, Equations 2.3 and Equations

2.4. Also in [23] the author Candes and Tao pointed out the two optimization programs

essentially have the same solution, provided that the RIP is satisfied. l1 minimization for

compressive sensing has been successfully used as an effective way for reconstructing a

sparse signal in many settings. See, e.g., [13, 22, 23, 24].

Dealing with additive noise in y or x, the problem transform into:

x̂ = arg min
x′
||x||0 s.t. ||Φx′ − y||22 � ε (2.5)

Where ε is arbitrary and unknown errors. Thanks to the active researchers in the areas of

Signal Processing, Machine Learning and Computer Vision. A lot of efficient and tractable

algorithms were presented to solve Equation 2.5. In essence, they can be divided into

following categories:

2.2.1 Direct optimization

In order to find a sparse solution (i.e., min l0 norm) of Equation 2.5, these kinds of algorithm

envision a decomposition of a signal x as in Equation 2.1 or an approximate decomposition

x =
n∑
i=1

siψi + r(m) (2.6)

where r(m) is a residual. We start from here to call ψi the dictionary as it is a common

word in signal processing community (i.e., the wavelet and Fourier dictionary is the best

known). It is well known that most of the new dictionaries are overcomplete, either because

they start out that way, or because we merge complete dictionaries, obtaining a new mega-

dictionary consisting of several types of waveform (e.g. Fourier & Wavelets dictionaries)

. The decomposition of Equation 2.1 is then nonunique, because some elements in the

dictionary have representations in terms of other elements. This kind of nonuniqueness
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gives us the possibility of adaptation, i.e., of choosing among many representations one

that is most suited to our purposes of which Sparsity and Super Resolution are highly

demanded.

From all the above, one would find the connection between sparse representation∗ and

compressing sensing as they all do the job of finding as sparse as possible the basis to

represent the signal and trying to decompose to recover the exact signal with few significant

coefficients. However, CS differs from sparse representation, the later is a sample-then-

compress framework meaning that we first acquire a sufficient data sample and then we

apply a compression algorithm on the data while CS as like its name directly acquiring a

compressed signal representation.

Several methods have been proposed for solving Equation 2.6. They are typical call

greedy algorithms ranging from general approaches like the method of Matching Pursuit

[56], to clever schemes derived for specialized dictionaries, like Orthogonal Matching

Pursuit [64]. Elsewhere about the algorithm, [26] gives explanation in more depth.

2.2.2 General unconstrained optimization

The CS problem falls into the unconstrained optimization problem of the form

min
x

Φ(x) := f(x) + τc(x), (2.7)

where f : Rn → R is a smooth function, and c: Rn → R, usually called the regularizer or

regularization function, is finite for all x ∈ Rn. Problem 2.7 generalizes the now famous

l2 − l1 problem (called basis pursuit denoising (BPDN) in [26])

min
x∈Rn

1

2
||y − Φx||22 + τ ||x||1 (τ > 0) (2.8)

Problem 2.8 is closedly related to the following two formulations:

∗namely basis pursuit in signal processing community and l1 regularization in statistical community
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min
x
||y − Φx||22 s.t. ||x||1 ≤ K (2.9)

frequently referred to as the least absolute shrinkage and selection operator (LASSO) [62],

and

min
x
||x||1 s.t. ||y − Φx||22 ≤ ε (2.10)

The precise relationship between Problem 2.8, Problem 2.9, and Problem 2.10 is

discussed in [41] and [66], for example.

Also, the Dantzig Selector has the form

min
x
||x||1 s.t. ||Φ∗(Φx− y)||∞ ≤ γ (2.11)

where γ is a user specified parameter, relaxes the Equation 2.4 in a different way. Equation

2.11 requires that the residual (Φx − y) of a candidate vector x not be too correlated with

any of the columns of Φ (the product Φ∗(Φx−y) measures each of these correlations) [21].

Soft thresholding based algorithms are most popular in dealing with these kinds of

formulation, like coordinate descent [42, 70], Bregman iterative algorithms [73], Fast

Linearized Bregman Iteration [12], SpaRSA [68], GPSR [41] and log-barrier algorithm

[10]. Equation 2.4 can be recast as an LP, a primal-dual algorithm for linear programming

would solve this [17].

2.2.3 Homotopy

Let reconsider Equation 2.8, if the Lagrangian multiplier τ > 0 is also a known parameter.

The optimization problem could be formulated as

min
x∈Rn,τ

1

2
||y − Φx||22 + τ ||x||1 (τ > 0) (2.12)

Homotopy continuation methods could be used in this setting, for example [47, 37, 65].
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Figure 2.1: The relations between the combinatorial and geometric approaches and the
two main classes of decoding algorithms [6] .

2.2.4 Combinatorial approach

In the combinatorial approach, the measurement matrix Φ is sparse and oftern binary.

Typically, it is obtained from an adjacency matrix of a sparse bipartite random graph. The

recovery algorithm proceeds by iteratively identifying and eliminating large coefficients1

of the vector x. The identification uses nonadaptive binary search techniques. Examples

of combinatorial sketching and recovery algorithms include [29, 48, 71, 60]. The typical

advantages of the combinatorial approach include fast recovery (often sub-linear in the

signal length n if k � n), as well as fast and incremental (under coordinate updates)

computation of the observation vector Φx. In addition, it is possible to construct efficient

(albeit suboptimal) measurement matrices explicitly, at least for simple type of signals. For

example, it is known [48, 71], how to explicitly construct matrices with k2(log logn)O(1)

measurements, for signals x that are exactly k-sparse. The main disadvantage of the

approach is the suboptimal measurement length. Figure 2.1 summarizes the relationship

between the combinatorial and geometric approaches for sparse signal recovery.
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Chapter 3

Problem Setup

We consider a wireless sensor network of n sensors, each of which measures a real data

value xi. Suppose the signal is compressible, so that it can be well approximated using

k ≤ n coefficients of some orthonormal transform. For simplicity, we assume that each

sensor stores one real value. At last, we want to be able to query only m designated sensors

and recover an approximation of the n data values, with reconstruction error comparable to

the best k-term approximation.

3.1 Two Tier Sampling Model

Consider a wireless network of n sensors, all connected through 1-hop wireless com-

munication, each measures a real data value xi, i = 1, 2, · · · , n, which is k-sparse

or compressible. The network topology is modeled as an undirected graph G where

G = (V,E). V represents the nodes in the network and E represents an edge which

connects two nodes if they are within radio transmission range of each other.

Our distributed compressive sparse sampling (DCSS) algorithm is based on a two-tiered

sampling model which described in Figure 3.1. In tier one each sensor unit samples the

environment to obtain the discrete data readings xi. In tier two the FC, acting as a pseudo

sensor, samples the entire sensor networks using compressive sparse sampling to obtain (or

15



Figure 3.1: Two tier sampling model

select) m designated sensors which serve as aggregators and directly respond to queries

sent from the FC.

3.2 Sparse Signal Classes

We categorize the general signals used in this thesis into two classes.

3.2.1 k-Sparse Signal

We say that a n-dimensional signal x is k-sparse if it has k or fewer non-zero components:

x ∈ Rn, ||x||0 := |supp(x)| ≤ k � m,

where |supp(x)| denotes the cardinality of the support set of x, and thus ||x||0, namely the

number of non-zero components, is a quasi-norm.
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Figure 3.2: The power-law decay curve and k-term approximation.

3.2.2 Compressible Signal

We consider a real data vector x ∈ Rn, and fix an orthonormal transform Ψ ∈ Rn×n

consisting of a set of orthonormal basis vectors {ψ1, · · · , ψn}. Ψ can be, for example,

a Wavelet or a Fourier transform. The transform coefficients Θ = [ψT1 x, · · · , ψTnx]T of

the data can be ordered in magnitude, so that |θ1| ≥ |θ2| ≥ · · · ≥ |θn|. The best k-term

approximation keeps the largest k transform coefficients and discards the remaining as zero.

The approximation error is ||x− x̂||22 = ||Θ− Θ̂||22 =
∑n

i=k+1 ||θi||2.

According to CS literature [40, 32], the data is compressible if the magnitude of its

transform coefficients decay like a power law. That is, the ith largest transform coefficient

satisfies |θi| ≤ Li−
1
p , where L is some positive constant, and 0 < p ≤ 1. Note that p

controls the compressibility (or rate of decay) of the transform coefficients (i.e., smaller p

implies faster decay). The approximation error , is then

||x− x̂||2 = ||Θ− Θ̂||2 ≤ αpLk
−1/p+1/2

where αp is a constant that only depends on p. Of course, sparse signals are special

cases of compressible signals. Figure 3.2 shows the power-law decay curve and k-term

approximation with respect to the sorted index of the coefficients.
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3.3 The Sensor Subset Selection Problem

By definition, the sensor subset selection problem is to choose a set of m sensor

measurements, from a set of n possible or potential sensor measurements. Solving this

problem by evaluating the performance for each of the Cm
n possible choices of sensor

measurements is not practical unless m and n are small. Broadly speaking, this problem

belongs to traditional feature selection problem.

A large class of algorithms have been developed that search for optimal solutions (e.g.,

exhaustive search, branch and bound, genetic algorithm) and deterministic suboptimal

solutions (e.g., sequential forward selection, sequential backward selection). We now

consider the zero-one matrix with elements {φij} and the feature set F with elements,

fj, j = 1, 2 · · · , n. Defining φij = 1 if we select the set element fj and φij = 0

otherwise. In the sensor subset selection problem, we view
∑m

i=1 φijfj , j = 1, 2, · · · , n

as the selection of m sensor measurements from totally n number of sensors. Thus the

sparse binary measurement matrix naturally severs as a sensor selection matrix.

3.4 Sparse Recovery Problem

In Chapter 2 Section 2.2 we introduce some flavors on sparse recovery algorithms. Figure

3.3 shows the problem of estimating an unknown signal based on m noisy observations,

when the number of samples m is much less than the ambient signal dimension n. This is

typically sparse signal recovery problem given that the signal model is either exact k-sparse

or compressible.

We can then view the sparse recovery problem as the recovery of the k-sparse signal

x ∈ Rn from its measurement vector y = Φx ∈ Rm.

If a matrix Φ satisfies certain RIP property, then the recovery process can be

accomplished by finding a vector x? using the following linear program:

min ||x?||1 Φx? = Φx. (Sparse Recovery)
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Figure 3.3: An Example of Sparse Recovery

A well-studied phenomenon in signal processing is that many natural classes of

signals, such as smooth signals with bounded derivatives and bounded variation signals,

are compressible in some transform domain [61]. Sensor networks measuring a smooth

temperature field, for example, may efficiently represent the data using only a few large

transform coefficients, which record useful structure such as average temperature and sharp

temperature changes. The main goal in this thesis is to recover a vector x̂ corresponds to

the physical phenomenon recorded by the senor nodes such that the `p approximation error

||x − x̂||p is at most C > 0 times the smallest possible `q approximation error ||x − x?||q,

where x? ranges over all k−sparse vectors. That is,

||x− x̂||p ≤ C · inf ||x− x?||q

For the algorithms given in this thesis we have p = q.
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Chapter 4

Graphs and Sparse Measurement

Matrices

In this chapter, we explore the use of sparse graph codes for compressed sensing

measurement matrices design. Compressed Sensing has many properties in common with

coding theory. The recovery algorithm is similar to the decoding algorithms of error

correcting codes but over Rm instead of a finite field. As a result, several results from

coding theory have been generalized to fit compressed sensing techniques. In 4.1, we

formally gives the definition of Bipartite Graph. We then move on to the definition and

theory about Exapnder Graphs in 4.2 and the connections between the Expander Graph and

Compressed Sensing are presented in 4.3, we show that high-quality expander graph can

yield matrices with RIP-p property. Finally, we present our sparse measurement matrices

design procedure using the adjacency matrix of the expander graph in 4.4.

4.1 Bipartite Graph

A graph is an ordered pair G = (V,E) comprising a set V of vertices or nodes together

with a set E of edges or lines. The edges may be directed (asymmetric) or undirected

20



(symmetric), which corresponding to directed graph and undirected graph. We begin by

first give a formal definition of the Bipartite graph:

Definition: A bipartite graph G = (U, V,E) is a graph whose vertices can be divided

into two disjoint sets U and V such that every edge in E connects a vertex in U to one in

V ; that is, U and V are independent sets. Denote m and n respectively the cardinality of

set U and set V (i.e., |U | = m, |V | = n). See Fig. 4.1 for an example.

Figure 4.1: An example of a bipartite graph.

A regular graph is a graph where each vertex has the same number of neighbors, i.e.,

every vertex has the same degree or valency. Here, we define the degree of a vertex of

a graph as the number of edges incident to the vertex, with loops counted twice. The

degree of a vertex v is denoted deg(v). A regular graph with vertices of degree d is called

a d−regular graph or regular graph of degree d. A bipartite graph G is said to be d-left

regular if all vertices in the left partition of G have degree d. Similarly, we can define a

bipartite graph to be d-right regular.

A matrix is usually associated with a graph to store some of the information about the

graph. This matrix can be used to obtain more detailed information about the graph. If a

graph has n vertices, we may associate an n×nmatrixA which is called adjacency matrix.

The adjacency matrix A is defined by
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A =

 1 if vi → vj

0 otherwise
(4.1)

Below in Fig. 4.2 shows an example of three graphs and there corresponding adjacency

matrices. It also indicates that for an undirected graph, the adjacency matrix is symmetric.

Figure 4.2: An example of the adjacency matrix of a graph.

The adjacency matrix A of a bipartite graph whose parts have r and s vertices has the

form

A =

 O B

BT O

 ,

where B is an r × s matrix and O is an all-zero matrix. Clearly, the matrix B uniquely

represents the bipartite graphs. It is sometimes called the biadjacency matrix. Formally,

let G = (U, V,E) be a bipartite graph with parts U = u1, · · · , ur and V = v1, · · · , vs.

The biadjacency matrix is the r × s 0-1 matrix B in which bi,j = 1 iff (ui, vj) ∈ E. For

example, the biadjacency matrix B in Fig. 4.1 is a 5 × 4 matrix
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B =



1 0 0 0

1 1 0 0

0 0 1 1

0 1 0 0

1 0 0 1


,

So the adjacency matrix A of this bipartite matrix is

A =

 O B

BT O

 =



0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1

1 1 0 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0


4.2 Expander Graph

Definition: A (k, ε)−unbalanced expander is a bipartite graph G = (U, V,E), |U | =

n, |V | = m(n 6= m thus unbalanced) with left degree d such that for any X ⊂ U with

|X| ≤ k, the set of neighborsN(X) ofX has size |N(X)| ≥ (1−ε)d|X|, for all 0 < ε < 1.

For example, the bipartite graph G = (U, V,E) in Fig. 4.3 is called a (k, ε) expander

if for any subset of left nodes X , with cardinality |X| ≤ k, are connected to at least

(1−ε)|E(X)| righthand side nodes (namely the neighbors ofX , denoted byN(X)), where

|E(X)| is the set of links that go from X to the righthand side (namely the degree d of left

node U ). In other words, |E(X)| is the total number of nonzero elements in the columns

corresponding to X in the biadjacency matrix B of the bipartite graph G, |N(X)| is the
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number of nonzero rows in the biadjacency B. Put it mathematically, |N(X)| ≥ (1 −

ε)d|X|.

Figure 4.3: An unbalanced expander graph: any sufficiently small subset X on the left has
a neightborhood N(X) of size at least (1− ε)d|X|

4.2.1 Some Facts on Expander Graphs

The following claim follows from the chernoff bounds [7].

Proposition 1: For any n/2 ≥ k ≥ 1, ε > 0, there exists a (k, ε)−unbalanced expander

with left degree

d = O(
log(n

k
)

ε
)

and right set size

m = O(
k log(n

k
)

ε2
)

The RIP-1 property of the expander graph is stated as follows:

Lemma 4.0.1 (RIP-1 property of the expander graphs [49]). : Let m × n matrix Φ be the

adjacency matrix of a (k, 1− ε) expander graph E, then for any k−sparse vector x ∈ Rn

we have:
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(1− 2ε)d||x||1 ≤ ||Φx||1 ≤ d||x||1

Proof: The upper bound is trivial using the triangle inequality, so we only prove the

lower bound. The left side inequality is not influenced by changing the position of the

coordinates of x, so we can assume that they are in a non-increasing order: |x1| ≥ |x2| ≥

· · · ≥ |xn|. Let E be the set of edges of G and eij = (xi; yj) be the edge that connects xi to

yj . Define

E2 = {eij : ∃k < i s.t. ekj ∈ E},

.Intuitively E2 is the set of the collision edges. Let

Ti = {ei′j ∈ E2 s.t. i
′ < i},

and ai = |Ti|.

Clearly a1 = 0; moreover by the expansion property of the graph for any k′ less than or

equal to k, a′k is less than or equal to εd′k. Finally since the graph is k-sparse we know that

for each k′′ greater than k, x′′k is zero. Therefore

∑
eij∈E2

=
∑n

i=1 |xi|(ai − ai−1)

=
∑

i≤k ai(|xi| − |xi+1|)

≤
∑

i≤k εdi(|xi| − |xi+1|)

≤
∑

i≤k |xi|εd

= εd||x||1.

Now the triangle inequality, and the definition of E2 imply
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||Φx||1 =
m∑
j=1

|
∑
eij∈E

xi|

=
m∑
j=1

|
∑
eij∈E2

xi +
∑
eij 6∈E2

xi|

≥
m∑
j=1

(|
∑
eij 6∈E2

xi| − |
∑
eij∈E2

xi|)

=
m∑
j=1

(|
∑
eij 6∈E2

xi|+ ||
∑
eij∈E2

xi|| − 2||
∑
eij∈E2

xi||)

=
∑
eij 6∈E2

|xi|+
∑
eij∈E2

|xi| − 2
∑
eij∈E2

|xi|

≥ d||x||1 − 2εd||x||1

= (1− 2ε)d||x||1.

4.3 Connection between Expander Graph and Compressed

Sensing Matrices

In this section we recall the main results by Berinde et al. [6].It shows that RIP-p matrices

for p ≈ 1 can be constructed using high-quality expanders.

We consider the CS matrices that are binary and sparse. They have only a small number

(i.e., d) of ones in each column, and all the other entries are equal to zero. It has been

shown recently [25] that such matrices cannot satisfy the RIP property with parameters k

and δ, unless the number of rows is Ω(k2). Recent result in [6] demonstrates that such

matrices satisfy a different form of the RIP property, namely RIP-p property if for any

k-sparse vector x and ||Φx||p = (1±δ)||x||p holds. In particular, it shows that this property

holds for 1 ≤ p ≤ 1 + O(1)/ log n if matrix Φ is an adjacency matrix of a high-quality

unbalanced expander graph, where “high-quality” refers to an expander with ε as small as

possible, creating an expansion as large as possible.
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In the following, we discuss the relationship between the adjacency matrix, the

(k, ε)-unbalanced expander graph and the RIP-p property of the adjacency matrix that have

been extensively studied in [6]. Theorem 4.1 states the fact that the adjacency matrix of

a (k, ε)-unbalanced expander graph satisfies the RIP-p property, which can be used for

guaranteed CS recovery problem in (Sparse Recovery).

Theorem 4.1 ([6]). Consider any m × n matrix Φ that is the adjacency matrix of an

(k, ε)−unbalanced expander G = (U, V,E), |U | = n, |V | = m, with left degree d, such

that 1/ε, d are smaller than n. Then the scaled matrix Φ/d
1
p satisfies the RIPp,k,δ property,

for 1 ≤ p ≤ 1 + O(1)/ log n and δ = Cε for some absolute constant C > 1.

Proof: The case of p = 1 is proved in Section 4.3 in this thesis. The case of p ≤

1 + 1/ log n is proved in the full version in [6].

In the following, Theorem 4.3 demonstrates that any binary matrix Φ with each column

having d 1’s and satisfies the RIP-p property with proper parameters, must be an adjacency

matrix of a good unbalanced expander. That is, a RIP-p matrix and the adjacency matrix of

an unbalanced expander are essentially equivalent.

Theorem 4.2 ([6]). Consider anym×n binary matrix Φ such that each column has exactly

d ones. If for some scaling factor S > 0 the matrix SΦ satisfies the RIPp,k,δ property, then

the matrix Φ is an adjacency matrix of an (k, ε)−unbalanced expander, for

ε = (1− 1

1 + δ
)/(2−

√
2)

Next,we want to show that if Φ is an adjacency matrix of an expander graph, then the

LP decoding procedure can be used for recovering sparse approximations. Let Φ be an

mtimesn adjacency matrix of an unbalanced (2k, ε)-expander G with left degree d. Let

α(ε) = (2ε)/(1 − 2ε). We also define E(U : V ) = E ∩ (X × Y ) to be the set of edges

between the sets U and V . The following theorem provides recovery guarantees for the

problem Sparse Recovery by setting u = x and v = x?
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Theorem 4.3 ([6]). Consider any two vectors u, v, such that for y = u−v we have Φy = 0,

and ||v||1 ≤ ||u||1. Let S be the set of k largest (in magnitude) coefficients of u, then

||v − u||1 ≤ 2/(1− 2α(ε)) · ||u− uS||1

Proof: We have

||u||1 ≥ ||v||1 = ||(u+ y)S||1 + ||(u+ y)Sc||1

= ||uS||1 − ||yS||1 + ||ySc||1 − ||uSc ||1

= ||u||1 − 2||uSc ||1 + ||y||1 − 2||yS||1

≥ ||u||1 − 2||uSc ||1 + (1− 2α(ε))||y||1

Lemma 4.3.1 (L1 Uncertainty principle). : Consider any y ∈ Rn such that Φy = 0, and

let S be any set of k coordinates of y. Then we have

||yS||1 ≤ α(ε)||y||1

Proof: See [6].

where we used Lemma 4.3.1 in the last line. It follows that

2||uSc ||1 ≥ (1− 2α(ε))||y||1

By combining Theorem 4.3 with some basic facts of high quality expanders described

in Section 4.2.1 we conclude that the CS recovery scheme can achieve best known bounds

on the number of measurements which is O(k log(n/k)), the update time, O(log(n/k)),

and the encoding time, O(n log(n/k)).
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4.4 Design of Sparse Measurement Matrices

We will now begin to give the procedure on how to design the binary sparse matrices to

serve for the measurement matrix used in compressed sensing. Followed that, we observed

that, if we use this {0, 1}- matrix as an indicator set for the sensor subset selection, with

each row corresponding to the total number of n sensors in the field, interestingly, each

sensor will be selected with equal number of times during the measurement process. In

other word, we have an uniform energy consumption on every sensor and guaranteed

fairness on the subset of sensor selected. We will illustrate more in Chapter 5 Section

5.2.

A binary sparse matrix Φ of m rows and n columns is generated in the following steps:

• Step 1: For each column, randomly generate d integers whose values are between 1

and m and place 1′s in those rows indexed by the d numbers;

• Step 2: If the d numbers are not distinct, repeat Step 1 until they are (this is not really

an issue when d� m).

By Theorem 4.3 with some proper value of d, we see that such a matrix is the adjacency

matrix of an expander graph of degree d with high probability.
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Figure 4.4: An Example of 200× 1024 binary sparse matrix with degree d = 8
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Chapter 5

Distributed Compressive Sparse

Sampling Algorithm

In this chapter, the detail of our the distributed compressive sparse sampling (DCSS)

algorithm will be described with the averaged per sensor communication cost analyzed.

Some practical implementation issues and the fairness of the sensor selection problem are

also discussed then after.

5.1 Distributed Compressed Sensing Algorithm

We now describe an algorithm by which every sensor in the wireless network each measures

a data value xi ∈ Rn, and each computes and stores one sparse random projection of the

aggregate data x. Consider a m × n sparse binary matrix Φ with entries as defined in

Chapter 4. Each sensor will compute and store the inner product
∑n

j=1 Φijxj between the

aggregate data x and one row of Φ. See Figure 5.1, we think of this as generating a bipartite

graph between the n data nodes and the m encoding nodes. Figure 5.2 shows that the m

encoding nodes can be used as the m observations to reconstruct an approximation of x.

The m encoding nodes will corresponding to m designated sensors in the network. Below

is the description of the distributed compressive sparse sampling (DCSS) algorithm.
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Figure 5.1: Sensor readings projection can be seen as generating a bipartite graph between
the n data nodes and the m encoding nodes.

Figure 5.2: An example of observations from sensor data projection using sparse binary
matrix.
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Algorithm 1 Distributed Compressive Sparse Sampling Algorithm (DCSS)
Input:

Sparse binary matrix Φ ∈ Rm×n;
Environmental reading x ∈ Rn;

Output:
Recovered vector x∗ ∈ Rn;

1: The fusion center (FC) generates a sparse binary matrix Φ and randomly chooses
m designated sensors then broadcasts Φ and m sensor IDs, each sensor node in the
network stores them locally;

2: For each individual sensor j, (1 ≤ j ≤ n) , if φij 6= 0, then sensor node j sends its
reading xj to designated sensor ID i. Repeat for all 1 ≤ j ≤ n;

3: For m designated sensors, each computes and stores the sum of the reading it receives;

4: Finally, the m designated sensors send directly their results to FC and FC performs
compressed sensing recovery for x?.

From above DCSS algorithm, we see that for each individual sensor, φij ·xj means that

sensor id j sends its readings xj to the designated sensor i, if φij 6= 0. Correspondingly,

for m designated sensors, designated sensor i computes and stores the summation of the

sensor reading it receives, repeat for all 1 ≤ i ≤ m and then report y1, y2, · · · , ym, as

observations y ∈ Rm to FC. After collecting all the m observations, FC will recover the

original signal x ∈ Rn using Linear Programming. For the communication cost, the dense

CS matrices require O(n) packets per sensor to compute the projection in a network of size

n, while the sparse binary matrix with fix d ones in each column requires O(1) packets per

sensor to compute the projection in a network of size n and the m designated sensors need

an average of 1
m
· O(m · d) = O(1) communications to compute the observations. We see

that using sparse binary matrix greatly reduces the overall communication cost.

We want to talk a little bit more on implementation of the algorithms. The main issues

are how to choose d, that is the number of ones in each column, andm, which is the number

of designated sensor that directly communicate to fusion center. We already give some

theoretic facts in Chapter 4 Section 4.2.1, where d = O(log(n/k) and m = O(k log(n/k).

In our experiments, the dimension of data is 1024 and d is set equal to 8. Vary d a little does

not affect too much the recovery results. While for the purpose of testing the performance
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of recovery, we vary the m from 100 to 1000 depending different experiments settings. But

clearlym = O(k log(n/k) should be a touchstone for choosing the number of observations

in order to achieve both energy efficiency and communication reduction.

5.2 Concern on the Fairness of the Subset Selection Pro-

cess

Since sparse binary projection matrix we proposed can also be seen as a sensor subset

selection matrix for choosing m designated sensors to communicate with the FC directly,

it is important to evaluate its fairness in sensor selection to avoid leaving “holes” in the

network due to extensive energy consumption for computation and communication. In

this case, a balanced energy consumption among all the sensor nodes is obvious since the

proposed sparse binary projection matrix has exactly d 1’s along each column confirming

that every sensor nodes in the WSN will be selected to be active d times during the entire

process of distributed data aggregation for recovery of n-dimensional data value x. The

only imbalance energy consumption comes from these designated sensors which computes

and reports the projections to the FC. However, since m� n and the measurement matrix

can be re-generated each time a query task is performed, in the long run, the energy

consumption can still be balanced.
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Chapter 6

Experiments

Following chapter 5’s procedures, we carried out the experiments on both synthetic and

real datasets using distributed compressed sensing algorithms for data recovery. For the

synthetic data experiment part we test the recovery of exact k-sparse signals, noisy sparse

signals with different noise decibels and as well as compressible signals. In the real

experiment part, the real data is collected from a WSN deployed in the Intel Berkeley

Research Laboratory. The network recorded temperature, humidity, light and voltage

measurements at 31 seconds intervals. In our experiments, we use the light intensity

readings at node 19. The data values are represented by wavelet coefficients to get a

compressible representation. Throughout the experiments, we assume the data value x

we want to recover is in 1024 dimension. For the CS recovery algorithm that processed

in the FC, we use linear programming method in the popular `1 magic [16] package. The

random Gaussian and Fourier scramble measurement matrices are often used in the CS

community. We will compared our results using sparse binary matrix with both of them.
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Figure 6.1: An example of an exact sparse signal with n = 1024 and sparsity k = 30.

6.1 Experiment using Synthetic Data

6.1.1 Exact Sparse Signal Recovery

We consider a sparse vector x with length n = 1024 contains only ±1, and set the sparsity

level k = 30 (i.e., x only have 30 non-zero entries). Figure 6.1 shows the exact sparse

signal x.

Figure 6.2 shows the recovery performance compared to the Gaussian Fourier scramble

measurement matrix. The recovery performance is evaluated with various number of

measurements m, and we use the relative approximation error ||x−x
∗||2

||x||2 as the metric, where

x∗ is output recovered result of signal x. We run the recovery process 100 times with

the same sparse signal x each round and different measurement matrices. The result

demonstrates that the sparse binary matrix performs as good as these dense matrices that

used more often.

6.1.2 Noisy Sparse Signals Recovery

We consider the same sparse signal x but with different noise levels that occurred during

the sensor data recording and data transmission stage. In our experiments we manually

add different noise levels to observation y. Figure 6.3 shows the recovery performance of

the noisy measurements y. We use five different noise levels with the signal to noise ratio

(SNR) equal to 5, 15, 25, 35, 45, respectively. The number of measurements is chosen
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Figure 6.2: Recovery result of an n = 1024, sparsity k=30 sparse signal x, with an average
of 100 experiments using LP recovery method.

as m = 200, 700 respectively. We use the `2 distance between the original signal and

recovered one (i.e., ||x−x?||2) as the metric. The results are obtained by an average of 100

experiments using the same noisy measurements y. We see that the proposed sparse binary

matrix performs better than Gaussian matrix, while Fourier scramble works the best.

In order to be more fair on the evaluation, we increase the total number of measurements

to account for the error induced by insufficient measurements. Figure 6.4 shows the result

using m = 700 measurements. We see that since the observations y are corrupted by noise,

the more observations we get the worse the recovered result. But the result from using the

sparse binary matrix still lies in between the Gaussian matrix and the Fourier Scrambles.

We also conduct experiment on the recovery performance of our sparse binary matrix

with different noise SNRs added on different number of measurements. With an average

of 100 experiments, Figure 6.5 demonstrates that the higher the noise level, the worse the
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Figure 6.3: Noisy recovery result of an n = 1024, sparsity k=30 sparse signal x, with
different SNRs and an average of 100 experiments using LP recovery method andm = 200
measurements.

recovery accuracy. It is true because CS normally requires the sparsity feature of the signals

while adding more noise causes the signal to be less sparse.

6.1.3 Compressible Signal Recovery

While a strict sparse signal is rare in reality, we conduct experiments on compressible

signal which obey a decay signal model, x = 4n−
7
10 , we then sample the signal x to

get n = 1024 data points. We compare the recovery result using different matrices and

various measurements. The best k-term approximation is obtained by only keeping the

first k coefficients while setting the rest to zero. It can serve as a baseline of the recovery

performance evaluation. Figure 6.6 demonstrates that sparse binary matrices performs the

best for compressible signals in the sense that it has the closest recovery result to the known

best k-term approximation. Table 6.7 shows detailed result of the recovered error.
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Figure 6.4: Noisy recovery result of an n = 1024, sparsity k=30 sparse signal x, with
different SNRs and an average of 100 experiments using LP recovery method andm = 700
measurements.

Figure 6.5: Noisy recovery result of an n = 1024, sparsity k=30 sparse signal x, with
different SNRs and an average of 100 experiments using LP recovery method evaluated by
different measurements.
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Figure 6.6: Recovery result of an sampled compressible signal x = 4n−
7
10 , with an average

of 100 experiments using LP recovery method evaluated by different measurements.

Figure 6.7: Recovery results comparison of different methods.
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Table 6.1: Signal to Noise Ratio (SNR) of different measurement matrices.

Methods Wavelet Approx. Sparse Binary Gaussian Fourier Scramble
SNR 21.4735 25.5702 22.8528 25.4075

6.2 Experiment using Real Data

In this experiment, we consider the dataset [54] for temperature, humidity, and light

readings from a group of nodes deployed at the offices of Intel Research Labs in Berkeley,

CA. The signals were recorded in an office environment and therefore exhibit periodic

behavior caused by the activity levels during day and night. Therefore, we expect the

signals to be compressible in the wavelet domain.

We consider the recovery from CS measurements for the light intensity signal at node

19. We obtain different number of CS measurements for the signal using sparse binary

matrix, Gaussian matrix, Fourier Scramble. Figure 6.8 plots the recovered signal using 100

coefficients for wavelet approximation and the same 400 coefficients for Gaussian, sparse

binary matrix and Fourier Scrambles. We observe that wavelet approximate gives us more

smooth signal profile than the other measurement matrices, however, the recovered SNR

is the worst. Gaussian, Fourier Scramble and sparse binary matrices all perform well on

recovering the details around data point position 200 and 500 and sparse binary matrix has

the recovered SNR equals to 25.5702, which is the highest among the three. Table 6.1

shows the detailed SNRs of the recovered signal.

We also evaluate the recovery performance using the relative approximation error

metric. Figure 6.9 shows the result compared to various recovery methods, since our sparse

binary matrix also serve as the sensor selection matrix, we conduct experiment to compare

the sensor selection result compare to random sensor selection. The experiment shows

that sparse binary matrix outperforms all other methods when the number of measurements

is less than 300 except for wavelet approximation. When the number of measurements

increase, the sparse binary matrix still performs better than Gaussian and slightly worse

than Fourier Scramble. Random selection of sensors works good around measurement
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Figure 6.8: Recovery result of real Intel Lab signal using 100 wavelet coefficients and 400
CS measurements with different measurement matrices.

equals to 700 and performs poorly when the number of measurements is either too small or

too large.
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Figure 6.9: Recovery result of real Intel Lab signal, with an average of 100 experiments
using LP recovery method evaluated by different measurements.

Figure 6.10: Recovery results comparison of different methods.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we presented a novel distributed compressed sensing algorithm based on

sparse binary matrix for data recovery in WSNs. The connection between the sparse graph

and CS measurement matrix was explored. We constructed a sparse binary matrix that

resembles the unbalance expander graph with high probability for CS measurement matrix.

We showed that the sparse binary matrix can be used to select active sensor nodes and

project the sensor node readings to the designated sensors in the network simultaneously.

The experimental results showed that using sparse binary matrix, the accuracy of recovery

can be as good as the traditional dense CS measurement matrices and the proposed sparse

binary measurement matrix worked well on compressible data. Results from both synthetic

and real data experiments demonstrated the usefulness of the proposed distributed CS

algorithms using sparse binary matrix while the average communication cost per sensor

reduced from O(n) to O(1).
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7.2 Future Work

In the future, several aspects can be improved. Optimal design of the sparse binary

measurement matrix using expander graph or other sparse graph codes. For the recover

methods, we use LP decoding only, other fast online might be more realistic for wireless

sensor network application.
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