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I. RIP
Candes and Tao [1] introduced the following isometry condition on matrices Φ and established

its important role in CS. Given a matrix Φ ∈ Rm×n and any set T of column indices, we denote
by ΦT the m × #(T) (i.e., m × |T|) matrix composed of these columns. Similarly, for a vector
x ∈ Rn, we denote by xT the vector obtained by retaining only the entries in x corresponding
to the column indices T. We say that a matrix Φ satisfies the Restricted Isometry Property (RIP)
of order k if there exists a δk ∈ (0, 1) such that

(1− δk)∥xT∥2
2 ≤ ∥ΦTxT∥2

2 ≤ (1 + δk)∥x∥2
2 (1)

holds for all sets T with #T ≤ k (i.e., |T| ≤ k). The condition (1) is equivalent to requiring that
the Grammian matrix Φt

TΦT has all of its eigenvalues in [1− δk, 1 + δk] (here Φt
T denotes the

transpose of ΦT).
Restricted Isometry Condition (RIC) is necessarily a local principle, which concerns not the

measurement matrix Φ as a whole, but its submatrices of k columns. All such submatrices
ΦI , I ⊂ {1, · · · , n}, |I| ≤ k, are almost isometries. Therefore, for every k-sparse signal x, the
observation vector u = Φ∗Φv approximates v locally, when restricted to a set of cardinality k.
The following proposition formalizes these local properties of Φ.

Proposition I.1. (Consequences of Restricted Isometry Condition [2]) Assume a measurement
matrix Φ satisfies the restricted isometry condition with parameters (2k, ε). Then the following holds:

1) (Local approximation) For every k-sparse vector v ∈ Rn and and every set I ⊂ {1, · · · , n}, |I| ≤ k,
the observation vector u = Φ∗Φv satisfies

∥u|I−v|I∥2 ≤ 2.03ε∥v∥2. (2)

2) (Spectral norm) For any vector z ∈ Rn and every set I ⊂ {1, · · · , n}, |I| ≤ 2k, we have

∥(Φ∗z)|I∥2 ≤ (1 + ε)∥z∥2. (3)

3) (Almost orthogonality of columns) Consider two disjoint sets I, J ⊂ {1, · · · , n}, |I ∪ J| ≤ 2k. Let
PI , PJ denote the orthogonal projections in RN onto range(ΦI) and range(ΦJ), respectively. Then

∥PI PJ∥2→2 ≤ 2.2ε. (4)

II. GREEDY

One popular class of sparse recovery algorithms is based on the idea of iterative greedy
pursuit. The earliest one include the matching pursuit (MP) by G. Mallat, et al. [3], later advanced
by Y. Pati, et al. [4] and G. Davis, et al. [5]. Matching pursuit is related to the field of compressed
sensing and has been extended by researchers. Notable extensions are Orthogonal Matching
Pursuit (OMP) [6], Stagewise OMP (StOMP) [7], and compressive sampling matching pursuit
(CoSAMP).

Matching Pursuit was originally introduced in the signal-processing community as an al-
gorithm ”that decomposes any signal into a linear expansion of waveforms that are selected from a
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Algorithm 1: Matching Pursuit
Input:

◮ Measurement matrix Φ ∈ Rm×n.
◮ Observation vector y ∈ Rm.

Output:
◮ An estimate x̂ ∈ Rn of the ideal signal x.

1: x̂0 = 0, r(0) ← y, i = 0 ◃ Initialization
2: while halting criterion false do
3: i← i + 1
4: ϕi ← argmax

ϕi∈Φ
|⟨r(i−1), ϕi⟩| ◃ The column of Φ that is most correlated with r(i−1)

5: x̂i ← ⟨r(i−1), ϕi⟩ ◃ From residual new signal estimate
6: r(i) = r(i−1) − ϕi x̂i ◃ Update residual
7: end while
8: return x̂← x̂i

Algorithm 2: Orthogonal Matching Pursuit
Input:

◮ Measurement matrix Φ ∈ Rm×n.
◮ Observation vector y ∈ Rm.
◮ Sparsity level k of the ideal signal x ∈ Rn.

Output:
◮ An estimate x̂ ∈ Rn of the ideal signal x.
◮ A set Λk containing the positions of the non-zero elements of x̂.
◮ An approximation to the measurements y by ak.
◮ The residual r = y− ak.

1: r(0) ← y ◃ Initialize the residual
2: Λ(0) ← ∅ ◃ Initialize the indices
3: for i = 1, · · · , k do
4: λ(i) ← arg maxj=1,··· ,n|⟨r(i−1), ϕj⟩| ◃ The column of Φ that is most correlated with r(i−1)

5: Λ(i) ← Λ(i−1) ∪ λ(i)

6: Φ(i) ← [Φ(i−1)ϕ
λ(i) ]

7: x(i) ← arg minx̂∥y−Φ(i) x̂∥2 ◃ Solve the Least Squares for new signal estimate
8: a(i) ← Φ(i)x(i) ◃ New data approximation
9: r(i) ← y− a(i) ◃ New residual

10: end for
11: x̂ ← x(k)
12: return x̂, Λ(k), a(k), r(k)
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redundant dictionary of functions” [3]. It is a general, greedy, sparse function approximation scheme
with squared error loss, which iteratively adds new functions (i.e., basis functions) to the linear
expansion.

The essence of matching pursuit, Algorithm 1 is that, for a given vector x to be approximated,
first choose the vector from the dictionary on which x has the longest projection. Then, remove
any component of the form of the selected vector from x, i.e., orthogonalize x with respect to
the selected dictionary vector, and obtain the residual of x. The selected dictionary vector is in
fact the one that results in the residual of x with the smallest energy. Repeat this process for the
residual of x with the rest of dictionary vectors until the norm of the residual becomes smaller
than the threshold ε.
◃ (From the machine learning point of view [8])

For any function f ∈ H we will use f to represent the l-dimensional vector that corresponds to
the evaluation of f on the l training points:

f = ( f (x1), · · · , f (xl)). (5)

- y = (y1, · · · , yl) is the target vector.
- rn = y− fn is the residue.

It starts at stage 0 with f0 = 0, and recursively appends functions to an initially empty basis,
at each stage n, trying to reduce the norm of the residue rn = y− fn.

Given fn we build,
fn+1 = fn + αn+1gn+1 (6)

by searching for gn+1 ∈ D and for αn+1 ∈ R that minimize the residual error, i.e., the squared
norm of the next residue:

∥rn+1∥2 = ∥y− fn+1∥2

= ∥y− (f + αn+1gn+1)∥
2

= ∥rn − αn+1gn+1∥
2.

Formally,
(gn+1, αn+1) = arg min

(g∈D,α∈R)

∥rn − αg∥2

For any g ∈ D, the α that minimizes ∥rn − αg∥2 is given by

∂∥rn − αg∥2

∂α
= 0

−2⟨g, rn⟩+ 2α∥g∥2 = 0

α =
⟨g, rn⟩
∥g∥2 (7)

For this optimal value of α, we have
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∥rn − αg∥2 = ∥rn −
⟨g, rn⟩
∥g∥2 g∥2

= ∥rn∥2 − 2
⟨g, rn⟩
∥g∥2 ⟨g, rn⟩+ (

⟨g, rn⟩
∥g∥2 )2∥g∥2

= ∥rn∥2 − (
⟨g, rn⟩
∥g∥ )2 (8)

So the g ∈ D that minimize expression (7) is the one that minimize (8), which corresponds to
maximizing ∥ ⟨g,rn⟩

∥g∥ ∥
2. In other words, it is the function in the dictionary whose corresponding

vector is “most collinear” with the current residue.
◃ End

In matching pursuit, after a vector in the dictionary is selected, one may remove any compo-
nent of its form not only from x, but also from all other dictionary vectors before repeating the
process. This version of the method is called orthogonal matching pursuit and is computationally
more expensive than the nonorthogonal version, but typically gives significantly better results in
the context of coding. The basic orthogonal matching pursuit algorithm, is shown in Algorithm
2.

Algorithm 3: Regularized Orthogonal Matching Pursuit
Input:

◮ Measurement matrix Φ ∈ Rm×n.
◮ Observation vector y ∈ Rm.
◮ Sparsity level k of the ideal signal x ∈ Rn.

Output:
◮ Index set I ⊂ {1, · · · , n}.
◮ Reconstructed vector v̂ = x ∈ Rn.

1: r(0) ← y ◃ Initialize the residual
2: I ← ∅ ◃ Initialize the indices
3: Repeat until |I| ≥ 2k
4: u← Φ∗r
5: sort(u), J ← min{u(1 : k), |u|} ◃ Identify
6: |u(i)| ≤ 2|u(j)| s.t. ∀i, j ∈ J0 and J0 ⊂ J, J0 ← arg min∥u|J0∥2 ◃ Regularize
7: I = I ∩ J0
8: x̂← arg minx∗∈Rn∥y−Φx∗∥2
9: r(i) ← y−Φx̂ ◃ Update residual

10: end
11: x̂ ← x(k)
12: return x̂, Λ(k), a(k), r(k)

The reconstruction complexity of these algorithms (OMP, StOMP, ROMP) is around O(KMN),
which is significantly lower than the BP methods. However, they require more measurements
for perfect reconstruction and they lack provable reconstruction quality. More recently, greedy
algorithms such as the subpace pursuit(SP) [9] and the compressive sampling matching pur-
suit (CoSaMP) [10] have been proposed by incorporating the idea of backtracking. They offer
comparable theoretical reconstruction quality as that of the LP methods and low reconstruction
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complexity. However, both the SP and the CoSAMP assume that the sparsity K is known, whereas
K may not be available in many practical applications.

Algorithm sparsity adaptive matching pursuit (SAMP) [11], could recover signal without prior
information of the sparsity. Which make it promising for many practical applications when the
number of non-zero (significant) coefficients of a signal is not available.

REFERENCES

[1] E. Candes and T. Tao, “Decoding by linear programming,” Information Theory, IEEE Transactions on, vol. 51, no. 12, pp.
4203–4215, 2005.

[2] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recovery via regularized orthogonal matching
pursuit,” Foundations of computational mathematics, vol. 9, no. 3, pp. 317–334, 2009.

[3] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” Signal Processing, IEEE Transactions on, vol. 41,
no. 12, pp. 3397–3415, 1993.

[4] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive function approximation with
applications to wavelet decomposition,” in Signals, Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh
Asilomar Conference on. IEEE, 1993, pp. 40–44.

[5] G. Davis, S. Mallat, and Z. Zhang, “Adaptive time-frequency decompositions with matching pursuits,” Optical Engineering,
vol. 33, 1994.

[6] J. Tropp and A. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” Information Theory,
IEEE Transactions on, vol. 53, no. 12, pp. 4655–4666, 2007.

[7] D. Donoho, Y. Tsaig, I. Drori, and J. Starck, “Sparse solution of underdetermined systems of linear equations by stagewise
orthogonal matching pursuit,” Information Theory, IEEE Transactions on, vol. 58, no. 2, pp. 1094–1121, 2012.

[8] V. Pascal and B. Yoshua, “Kernel matching pursuit,” Machine Learning, vol. 48, no. 3, pp. 165–187, 2002.
[9] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal reconstruction,” Information Theory, IEEE

Transactions on, vol. 55, no. 5, pp. 2230–2249, 2009.
[10] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccurate samples,” Applied and

Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321, 2009.
[11] T. Do, L. Gan, N. Nguyen, and T. Tran, “Sparsity adaptive matching pursuit algorithm for practical compressed sensing,”

in Signals, Systems and Computers, 2008 42nd Asilomar Conference on. IEEE, 2008, pp. 581–587.


