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Abstract—As one of the most popular cloud services, data storage has attracted great attention in recent research efforts.
Key-value (k-v) stores have emerged as a popular option for storing and querying billions of key-value pairs. So far, existing
methods have been deterministic. Providing such accuracy, however, comes at the cost of memory and CPU time. In contrast,
we present an approximate k-v storage for cloud-based systems that is more compact than existing methods. The tradeoff is that
it may, theoretically, return errors. Its design is based on the probabilistic data structure called “bloom filter”, where we extend
the classical bloom filter to support key-value operations. We call the resulting design as the kBF (key-value bloom filter). We
further develop a distributed version of the kBF (d-kBF) for the unique requirements of cloud computing platforms, where multiple
servers cooperate to handle a large volume of queries in a load-balancing manner. Finally, we apply the kBF to a practical
problem of implementing a state machine to demonstrate how the kBF can be used as a building block for more complicated
software infrastructures.
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1 INTRODUCTION

One of the primary challenges in modern cloud
computing platforms is to provide highly scalable,
efficient, and robust storage services for application
needs. Among its various forms, key-value (k-v)
stores have emerged as a popular option for stor-
ing and querying billions of key-value pairs [1], [2],
[3] [4]. Examples of such services include Amazon
Dynamo [5], Memcached [6] (used by Facebook and
Twitter, etc.), Apache Cassandra [7], Redis [8], and
BigTable by Google [9]. Furthermore, many cloud
services now provide dedicated key-value stores, such
as Amazon S3 in its EC2 framework, to allow devel-
opers to quickly take advantage of database services
without worrying about the limitations of traditional
SQL formats.

One observation of these different k-v storage ser-
vices by existing cloud computing providers is that
they are deterministic, which indicates a query of
previous stored key should always return its correct
value. Although this is certainly a desired feature,
doing so requires storing and processing complete
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information of the keys and values, which introduces
overhead. Therefore, we develop a highly compact,
low-overhead, but approximate k-v storage service, by
taking inspiration from the bloom filter [10]. However,
despite of their usefulness, bloom filters are designed
for testing set memberships, not key-value operations.
Our goal is to develop an enhanced version of the
bloom filter, so that it is able to support key-value
operations. Specifically, it should support APIs that
are common for k-v storage services, such as insert,
update, delete, and query. Our goal is to make this
data structure highly compact, by making the tradeoff
that we allow false positives to occur, just like the
bloom filter.

Developing this data structure, however, is particu-
larly challenging for two reasons. First, the original
bloom filter uses bit arrays to keep track of the
membership of elements. The keys and values, how-
ever, are much more irregular in length, and can not
be directly stored into typical bloom filters. Second,
the original bloom filter does not support deletions.
Although later research, such as the counting bloom
filter [11], partially addressed this problem by using
counters to replace bits of a typical bloom filter, it only
keeps the frequency of elements instead of the values
of elements themselves.

We emphasize that there are indeed many scenarios
where we do need 100% correctness in storage. This
is not in conflict with our goals of developing the
kBF and d-kBF, as we also observe that there exist
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occasions where the application may have to be de-
ployed under stringent time constraints and limited
memory/storage space. A good example would be
their use as a cache system, where using the kBF or d-
kBF will allow a much larger size as the cache system
and using much less time to handle queries. Another
interesting application is where the data stored are
inherently insensitive to the existence of errors, as
the data themselves contain noise and errors that
need to be filtered. One example is that we need
to store large amount of data for further processing,
such as network traffic traces and noisy scientific
data such as instrument readings. In such cases, a
second step of processing will be invoked once data
are fetched. Therefore, it does not matter if the data
may occasionally return non-decodable errors due to
that they are inherently noisy and may contain errors.
In such cases, the kBF/d-kBF can serve for the raw
data storage directly.

The approach we present aims to address these
problems by supporting key-value operations with
predictable performance. In our previous work [12],
we have investigated the feasibility of this approach
with a prototype implementation. Specifically, we pro-
posed a method to encode the values into a special
type of binary encodings that can fit into the cells
of bloom filters. These encodings are designed to
be resilient to collisions, i.e., insertions and queries
can still be effectively handled when one or more
collisions occur in a cell of the kBF. In particular,
the decoding allows using k hashed locations collab-
oratively, rather than using any single one of them,
so that the successful decoding ratio can be greatly
improved. In this paper, we extend the kBF into a
comprehensive framework that has the following four
new contributions:

• We extend our method in [12], and present a com-
prehensive set of programming APIs for cloud
computing users to use kBFs as if they were
objects in their software implementations. These
new APIs include CREATE, JOIN, and COMPRESS,
which support operations on multiple kBF ob-
jects. Such an extension greatly extends the flex-
ibility of the kBF operations.

• Motivated by the unique requirements of cloud
computing environments, we develop a dis-
tributed design of the kBF, the d-kBF, so that
a user may use the familiar client-server model
to invoke the kBF service remotely. This contri-
bution makes the kBF to be scalable to massive
datasets.

• To address the challenge to achieve predictable
performance, we systematically analyze the com-
putational and storage complexity of the kBF, in-
cluding its capacity and decoding ratio to demon-
strate its performance limits.

• We conduct an analysis of resilience to noise of

the kBF. We model errors as a type of noise, where
we analyze its statistic features of Euclidean dis-
tance, where we demonstrate that the results are
consistent with the original error analysis.

In summary, the kBF represents a novel type of
the bloom filter that supports key-value operations
for cloud computing services. To further illustrate
its effectiveness, we demonstrate through a specific
application example: we use it as a building block for
developing an approximate concurrent state machine
(ACSM). Using ACSMs, a router can efficiently keep
track of many regular expression matchings simulta-
neously to detect potential behavior anomalies and
intrusions.

The remaining of this paper is organized as fol-
lows. Section 2 presents the related work. Section 3
describes the problem formulation and the design of
the kBF. Section 4 analyzes its performance tradeoffs.
Section 5 describes how the distributed version of the
kBF is developed. Section 6 evaluates the performance
of the kBF through experiments. Section 7 develops
an application of the kBF for monitoring TCP flag
transitions. Finally, Section 8 concludes this paper.

2 RELATED WORK

In this section, we describe related work in three parts:
first we describe the original bloom filter design, then
we describe its variants, and finally, we describe the
related work of the key-value stores in the cloud
computing area.

The bloom filter, originally developed by Burton H.
Bloom [10], is a space efficient randomized data struc-
ture that answers the question about membership
tests. Specifically, the bloom filter allows insertions
and queries of elements in sets, by hashing an element
to k different locations in a bit array of m bits. To
insert an element, each of the k bits is set to 1. To
query it, each of the k bits is tested against 1, and
any 0 found will tell that the element is not in the
set. In this way, no false negatives will occur, but false
positives are possible, since all k bits might have been
set to 1 due to other elements have been hashed to the
same positions. The bloom filter is highly compact: it
needs 10 bits to store each element to achieve a false
positive rate of 1%, independent of the number and
size of the inserted elements. Therefore, in situations
where only limited on-chip RAM is available, a bloom
filter becomes particularly useful.

After the original bloom filter was proposed, many
variants followed [13], [14], [15]. One relevant work is
the counting bloom filter [11], which has m counters
along with m bits. This way, the CBF can support not
only deletion operations, but also frequency queries.
However, the CBF is not designed for key-value op-
erations, hence, is also significantly different from our
work.
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In recent years, key-value stores have been increas-
ingly studied in the area of cloud computing plat-
forms. For example, [16] presents a framework that al-
lows secure outsourcing and processing of encrypted
data over public key-value stores, and could auto-
matically make use of multiple cloud providers for
improving efficiency and performance. [17] presents
M-Lock, which is a framework that helps accelerate
distributed transactions on key-value stores in cloud
computing platforms. Finally, [18] attempts to address
the increasing software-I/O gap in key-value stores
by using vector interfaces in high-performance net-
worked systems as the basis for key-value storage
servers, where they demonstrate that they can provide
1.6 million requests per second with a median latency
below one millisecond thanks to the high speed of
non-volatile memories. All these previous efforts are
different from ours in the sense that they are targeting
at accurate key-value stores while our approach is
approximate by nature.

3 DESIGN OF KBF
In this section, we introduce the design of the kBF.
We first present the problem formulation followed by
an overview of its structure. Then we present detailed
descriptions of its components and related algorithms.

3.1 The Problem Formulation

Assume that we have a collection of n key-value pairs
(ki, vi), where i ∈ [0, n − 1]. The keys and values can
be arbitrary strings. We then use the kBF to store these
keys and values, where we treat each kBF similar
to an object: it has its internal operations as well
as interfaces. The kBF should support the following
seven operations for the stored k-v pairs:

• CREATE (m, k) //create a new kBF based on
configuration parameters

• INSERT (k, v, d) //insert a key-value pair (k, v)
into the kBF of d

• UPDATE (k, vnew, d) //update a value for a key
k to vnew in the kBF of d

• QUERY (k, d) //query the value for a key k in the
kBF of d

• DELETE (k, d) //delete a key and its associated
value in the kBF of d

• JOIN (d1, d2) //combine two kBFs d1 and d2,
including all their keys and values

• COMPRESS (d) //compress a kBF d into half of
the original size

We next present the architecture of the kBF, which
is shown in the Figure 1. This figure focuses on the
insert and query operations, and we will describe
the delete and update operations later. The overall
procedure works as follows. When (key, value) pairs
are inserted, the algorithm first performs an one-to-
one conversion from their values to encoded binary
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Fig. 1. The kBF algorithm architecture

strings, using a secondary kBF (s-kBF) as an assisting
component. The pairs of the keys and their encodings
are then inserted into the main kBF, which serves as
the primary storage. On the other hand, if a key is
provided for a query operation, the main kBF will re-
turn a total of k encoded strings. These strings are fed
into a decoding algorithm to obtain the corresponding
encoding for the key, which is further converted into
its original value using a polynomial regression based
algorithm. The constructed (key, value) pair will be
returned to the user. In the following sections, we
describe the details of this process.

3.2 Encodings of Values
The central idea of the kBF is that it maps the values,
represented by a set V = {v1, v2, ..., vn}, into a set
of binary strings, denoted as e[vi], are constructed
according to the following two rules:

• Each value vi has a unique string e[vi].
• The XOR result of any two strings, i.e., e[vi]⊕e[vj ],

should be unique among themselves, as well as
to e[vi].

Given n values, the number of their pairwise combi-
nations is C(n, 2), or n(n−1)

2 . Therefore, the theoretical
minimum length of the binary string, as P , must
conform to:

2P ≥ n(n− 1)

2
+ n

Note that the minimal value of P may not be
achieved. Therefore, we develop a greedy algorithm
for finding the required encodings, as shown in Al-
gorithm 1. We start the search by setting the first en-
coding to 1. We then increase the successive encoding
repeatedly by 1. If there is no collision, then the new
encoding is admitted into the set of found encodings.
Otherwise, the next encoding is tested. Figure 2 shows
the gap between the theoretical minimal value and the
actual value. We also find that even for a large number
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of encodings, the gap is quite small. For example,
there is a theoretical lower bound of P = 28 for
214(16, 384) encodings, and the greedy method is able
to find a solution with P = 30.

Algorithm 1 Search Algorithm for Encodings
1: procedure ENCODING SEARCH(n)
2: e0 = 1
3: insert e0 into a bloom filter BF
4: counter ← 2
5: for j = 1 → n− 1 do
6: while True do
7: ej = counter
8: calculate the XOR result for ej

and ei, for i ∈ [0, j − 1]

9: if there is no collision for ej then
10: Insert ej and all XOR results into BF
11: counter ← counter + 1
12: break while
13: else
14: counter ← counter + 1
15: end if
16: end while
17: end for
18: end procedure

The Algorithm 1 also adopts an optimization in
steps 3 and 9 to speed up the search process for a large
n. Specifically, it will insert all admitted encodings
and their pair-wise XOR results, into a conventional
bloom filter. For every new encoding being tested,
its combinations with existing encodings are queried
against this bloom filter to determine if it has already
been inserted. If yes, then there is a high probability
that a collision has occurred. The algorithm then
proceeds to the next encoding. If a negative result
is returned by the bloom filter, it is guaranteed that
there is no collision for this new encoding because
the conventional bloom filter design never returns
false negatives. This optimization allows each new
encoding to be admitted or rejected in constant time.

3.3 Conversions from Values to Encodings
We next describe how values are converted into
encodings, which involves a secondary kBF (s-kBF)
that operates on values instead of keys. Specifically,
whenever a value needs to be converted, it is queried
against the s-kBF to decide if it has already been
assigned an encoding. If yes, then the encoding will

be used. Otherwise, a new encoding is obtained from
the pool of available encodings, and is assigned to
this value. The pair of (value, encoding) is then in-
serted into the s-kBF for later queries. Meanwhile,
the reverse pair of (encoding, value) is stored in
a separate lookup table for later conversions from
encodings to values. Because the s-kBF only stores
(value, encoding) mappings, it is much smaller than
the main kBF. Its operations are exactly the same as
the main kBF, as described in the next section.

3.4 Operations of the kBF
We now describe the operations of kBFs. Different
from a conventional bloom filter, each cell in the kBF
consists of two components: a counter and a possi-
bly superimposed encoding result. The counter keeps
track of how many encodings have been inserted: 0
means the cell is empty, 1 means one encoding has
been inserted, and so on. The encoding part contains
either an original encoding, or the XOR results of two
or more encodings that are mapped to the same cell.
In practice, we use a 32-bit cell with a 3-bit counter
and a 29-bit encoding.

Algorithm 2 kBF Insert Algorithm
1: procedure INSERT(key, evalue) � Insert operation
2: for j = 1 → k do
3: i ← hj(key)
4: Bi.counter ← Bi.counter + 1
5: Bi.value ← Bi.value XOR evalue
6: end for
7: end procedure

The typical kBFs support seven operations:
CREATE, INSERT, QUERY, UPDATE, DELETE, JOIN,
and COMPRESS. We first describe the CREATE
operation. Whenever this API is invoked, an empty
kBF object is initialized. Specifically, this API
takes two parameters, k and m, which specify the
dimensions of the underlying bloom filter.

We next describe the INSERT operation. When this
function is invoked, the kBF first finds k hashed
cells. The counter for each cell is increased, and the
encoding is superimposed into the cells by performing
the XOR operation with the existing contents stored
by each cell. Algorithm 2 describes this process, where
evalue represents the encoding of the value in k-v pair.

The third operation, QUERY, works as follows. For
each of the k cells, it will obtain the superimposed en-
codings as well as their associated counters. Followed
up with an decoding process, which will be discussed
in Section 3.5.

We next describe the DELETE operation. This opera-
tion is based on our observation that for any encoding
e, e XOR e = 0. Therefore, we can describe this
procedure in Algorithm 4.

Next, we can implement the UPDATE algorithm by
first querying the key to obtain its encoding, then
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Algorithm 3 kBF Query Algorithm
1: procedure QUERY(key) � Query operation
2: for j = 1 → k do
3: i ← hj(key)
4: Add Bi.value and Bi.counter to StateQueue
5: end for
6: State ← Decoding(StateQueue)
7: return State
8: end procedure

Algorithm 4 kBF Delete Algorithm
1: procedure DELETE(key, evalue) � Delete operation
2: for j = 1 → k do
3: i ← hj(key)
4: if Bi.counter > 0 then
5: Bi.counter ← Bi.counter − 1
6: Bi.value ← Bi.value XOR evalue
7: else
8: report error
9: end if

10: end for
11: end procedure

delete the key with its encoding, and finally insert
the key with its new encoding. Algorithm 5 describes
its details.

Just like a normal bloom filter, a kBF has its capacity
in terms of how many items it is able to at most
support. To avoid overflows of kBFs, we monitor
the number of inserted k-v pairs for a constructed
kBF. Whenever this reaches near its maximum, we
can allocate another kBF of the same size for new
k-v pairs. On the other hand, if we detect that an
existing kBF has too few active k-v pairs after repeated
deletions, we can start the COMPRESS operation. This
operation is facilitated by the bit-vector nature of
kBFs, and implemented through the JOIN operation.
Given two k-v sets, their JOIN operation works as fol-
lows. Suppose that they are represented by two kBFs,
L1 and L2, we can calculate the kBF that represents
the union set L = L1∪L2 by taking the XOR operation
of each cell: CellL = CellL1⊕CellL2. For the counters,
we can add them together to become the counter for
the new cells. Observe that a tradeoff of this operation
is that at the same time it saves memory space in
compaction, it will lose some information during the
XOR operations.

Algorithm 5 kBF Update Algorithm
1: procedure UPDATE(key, evalue) � Update operation
2: eold ← Query(key)
3: for j = 1 → k do
4: i ← hj(key)
5: if Bi.counter > 0 then
6: Bi.value ← Bi.value XOR eold
7: Bi.value ← Bi.value XOR evalue
8: end if
9: end for

10: end procedure

3.5 Decoding Superimposed Encodings
We next describe how to obtain original encoding
giving the counters and values in k hashed cells, as
shown in Algorithm 6. The simplest case is that one
or more counters equal 1, which indicates only the
queried key has been hashed to those cells and we
simply return the encoding directly.

The next part is to obtain the original encoding
which is the intersection of multiple superimposed
results. We first consider the problem: if there is an
XOR result, denote as V1, how to find the unique set
of {ei, ej}, such that V1 = ei ⊕ ej . By pre-constructing
a bloom filter that has all encodings, we can find this
unique set in O(N), by iterating through all encod-
ings, calculating its XOR result with V1, and checking
if the result can be found in the pre-constructed bloom
filter. We denote this process as (ei, ej) = decode2(V1).
Therefore, our first choice is to utilize two different
values from the set Queue2, denoted as V1, V2, and
conduct the decoding process, i.e., first conducting
(ei, ej) = decode2(V1) and (ei, ek) = decode2(V2), and
then finding the intersection ei, which is the encoding
with regard to the queried key. We denote this process
as ei = decode22(V1, V2) and it also takes O(N).

However, when the kBF is too crowded, such a
pair that shares one encoding may not exist. Our
next choice is to use two different values, denoted
as V1 ∈ Queue2, V3 ∈ Queue3. We develop an algo-
rithm for finding their common encoding as shown
in Algorithm 7. Note that here, we may encounter
two exceptions that prevent us from finding the single
common encoding if they occur: the first one is when
the V1 and V3 have two common encodings, i.e.
ei = em, ej = en; the second one is that we could
not guarantee that the XOR result of four different
encodings are distinct from each other. In both cases,
we return with a response as “non-decodable”. We
compare the performance difference of only using first
choice and using both two choices at the end of the
evaluation section.

Here, we discuss the time complexity of the decod-
ing algorithm. First, we consider Algorithm 7. Note
that inserting all encodings and their XOR results to
the two classic bloom filters takes O(N) and O(N2),
respectively. Furthermore, decoding V1 takes O(N).
Therefore, in total, the algorithm takes O(N2), where
N is the number of encodings.

For Algorithm 6, we first iterate k hash positions
to get the Queue2 and Queue3 in O(1). The pro-
cess decode22(V1, V2) takes O(N), and the process
decode23(V1, V3) is Algorithm 7 itself, which takes
O(N2). Overall the decoding algorithm takes O(N2).

3.6 Conversion from Encodings to Values
The final step in the operation is to convert encodings
to values for query results. To this end, recall that
we maintained a table of (encoding, value) mappings
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when encodings are created for values. In this table,
all encodings in the table are sorted in the ascending
order to simplify the lookup process later.

We follow a regression approach in this step. Specif-
ically, as illustrated in Figure 3, valid encoding values
usually form a curve that can be approximated with a
polynomial function. We choose a quadratic function
for this approximation, i.e., we find y = f(x), where
x ∈ [0, n − 1] as the index, and y is the encoding
value. We then find the inverse function x = f−1(y),
so that we can calculate the index given the value of
the encoding.

However, one challenge is that the f function is
not 100% accurate. To find the true location after
calculating the index, we search from the index by
observing that the average step increase of the encod-
ing values can be determined in advance. We describe
this procedure through an example. Suppose we have
a table of 10, 000 encodings, and we find its quadratic
function as f(x) = 92884900 + 32952.9x + 1.151x2.
The average step of all encodings is 44294, which is
pre-determined by empirical analysis. Let us suppose,
in one query, the encoding returned is 237551267.
According to this formula, the first index is found as
3868. By accessing the encoding corresponding to the
location 3868, we find it as 237525822, which has an
error of 25445 compared to the target encoding being
searched. By using the average step size, the index
will search using a step of 1. After two steps, the true
index is found at 3870. This way, only three memory
accesses are needed to find the encoding index and its
associated value, which is much faster than the binary
search method with an average number of memory
accesses of 14. Therefore, in terms of time complexity
of regression method, we consider it as constant time,
while binary search uses O(log(N)).

Algorithm 6 Decoding
1: procedure DECODING(StateQueue)
2: for r = 1 → k do
3: if Br.counter = 1 then
4: return Br.value
5: break for
6: else if Br.counter = 2 AND Br.value �= 0 then
7: add Br.value to Queue2
8: else if Br.counter = 3 AND Br.value �= 0 then
9: add Br.value to Queue3

10: end if
11: end for
12: if |Queue2| ≥ 2 then
13: choose V1, V2 ∈ Queue2
14: e = decode22(V1, V2)
15: else if |Queue2| = 1 AND |Queue3| ≥ 1 then
16: choose V1 ∈ Queue2, V3 ∈ Queue3
17: e = decode23(V1, V3)
18: else
19: return Not Decodable
20: end if
21: return e
22: end procedure

Algorithm 7 Decode with V1 and V3

1: procedure DECODE23(V1, V3) �
V1 = ei ⊕ ej , V3 = em ⊕ en ⊕ ek

2: Insert all encodings to bloom filter B1

3: Insert all XOR results to bloom filter B2

4: V4 = V1 ⊕ V3

5: if V4 is in B1 then
6: There are two common encodings, return Not

decodable
7: else
8: (ei, ej) = Decode2(V1)
9: V5 = ei ⊕ V3

10: V6 = ej ⊕ V3

11: if V5 is in B2 AND V6 is not in B2 then
12: return ei
13: else if V6 is in B2 AND V5 is not in B2 then
14: return ej
15: else
16: return Not decodable
17: end if
18: end if
19: end procedure

4 ANALYSIS OF KBF
In this section, we analyze the capacity and error rate
of the kBF using a theoretical analysis. The challenge
of this analysis is that a bloom filter is constructed
using several parameters, including its size m, the
number of hashing functions k, and the number of
k-v pairs n. It has been pointed out that to minimize
the false positive rate, there exists an optimal k given
a pair of n and m, where kopt =

m
n ln(2) [19]. On the

other hand, to maintain the false positive rate of the
filter below a threshold p, we know that

m = − n ln p

(ln(2))2
.

This formula shows that the parameter m must
grow linearly with the size of n, or conversely, given
an m, there exists an upperbound of n, over which
the false positive rate can no longer be sustained. We
can therefore define the following concept of capacity.

Definition 1: The p-capacity of a bloom filter is de-
fined as the maximum number of items that can be
inserted without violating the false positive probabil-
ity p.

It is clear that the p-capacity can be derived using

p-capacity = −m(ln(2))2

(ln(p))
.

Also observe that when p-capacity is reached, the
optimal number of hashing functions k is only related
to p, as k = − ln(p)

ln(2) . In the kBF, whenever there are too
many items inserted, we will allocate a new kBF with
the same size. Therefore, we can guarantee that the
false positive rate of each kBF will not be larger than
p.

Now we derive the distribution of encoding su-
perimposition for a kBF. Assume that this kBF has
been inserted with n items. We use c(i) to denote the
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number of encodings that are inserted into the ith cell.
If this number is 3 or more, we consider that this cell
is non-decodable. The probability that this counter is
incremented j times is a binomial random variable as

P (c(i) = j) =

(
nk

j

)
(
1

m
)j(1− 1

m
)nk−j .

Therefore, the probability that any counter is at least
j is

P (c(i) ≥ j) =
∑nk

i=j

(
nk

i

)
(
1

m
)i(1− 1

m
)nk−i.

Although it is relatively hard to obtain the closed
form results for this particular function, we simplify
it by observing in our setting, the value of nk and m
are both quite large. Therefore, we can use the extreme
limits of the formulas (by calculating n → ∞ and m →
∞) to approximate their original forms. We also use
numerical results to demonstrate that this approach is
indeed accurate.

The key observation we use to simplify the deriva-
tion comes from [20]. The result is concerned with the
urn-ball model, of which our model of a bloom filter
is a special case. Specifically, it states that if n balls are
randomly assigned into m urns, and that each ball is
equally likely to fall into any of the urns, suppose
we use Mr to denote the number of urns containing
r balls after the assignments are completed, we have
that

E[Mr] = m

(
n

r

)
(
1

m
)r(1− 1

m
)n−r (r = 0, 1, ..., n).

If n,m → ∞, with nm−1 → λ < ∞, then,

lim
n→∞E[m−1Mr] =

λr

r!
e−λ.

Apparently, for the case of a bloom filter, we have
nk hashing operations. Therefore, we should replace
n in the formula above with nk instead. Also, by
observing that P (c(i) = j) = Mr/m, we know that

lim
n→∞P (c(i) = j) =

λj

j!
e−λ.

Next, we consider the scenario that a bloom filter
has not yet reached its p-capacity. Therefore, we have,

nk

m
≤ ln(2)

On the other hand, if a bloom filter has exceeded
its p-capacity, we can define an additional parameter,
ρ, as the capacity coefficient. That is, we can set

nk

m
= ln(2)× ρ

Based on this, we can obtain that

lim
n→∞P (c(i) = j) =

(ρ ln(2))j

j!
× 2−ρ.

Next, we can estimate the probability of three or
more encodings combined together, which we deem
as non-decodable. Note that this is a simplified over-
estimate, because for such cases, we can still obtain
multiple candidate sets, and it is possible that we
can decode them with more computational overhead.
Therefore, the results here serve as a lower-bound (a
pessimistic value) on the capacity of a kBF. We can
find this probability by

n∑
j=3

P (c(i) = j) =

2−ρ−1
(
2ρ+1Γ(n+ 1, ρ(ln(2)))

)
Γ(n+ 1)

−
2−ρ−1

(
ρ2

(
ln(2)2

)
+ ρ(ln(4)) + 2

)
Γ(n+ 1)

Γ(n+ 1)
.

In this formula, the Γ stands for the gamma func-
tion. Its limit happens to be closed form as

Pn(ρ) = lim
n→∞

n∑
j=3

P (c(i) = j))

= 2−ρ−1
(−ρ2

(
ln(2)2

)
+ 2ρ+1 − ρ(ln(4))− 2

)
.

To verify, for the non-decodable probability of a
single cell, we calculate the numerical results and
plot them in Figure 4. Observe that the actual non-
decodable probability for a single cell is concentrated
around 0.0333313, which is the same as the predicted
value of Pn(1) as 0.0333132. This results shows that for
a single cell, if the kBF has not reached its p-capacity,
the probability that it has three or more encodings
stored is no more than 3.33%, which is independent
of the value of p.

Now we calculate the global decodability. We can
mathematically write this as

1− [Pn(ρ)
k + k × Pn(ρ)

k−1 × (P (c(i) = 2))].

The results for this probability with different k val-
ues are plotted in Figure 5. Observe here, for k = 10,
to maintain that virtually all decoding operations as
successful (success rate is almost 1), we can only
overload ρ to be less than 2.
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5 DISTRIBUTED KEY-VALUE BLOOM
FILTER

In this section, we describe how we develop a dis-
tributed key-value storage system based on the kBF
that is tailored for the distributed nature of cloud
computing platforms. Previous efforts in this domain
are mostly deterministic. For example, Memcached [6]
essentially is a distributed k-v store, and is utilized
as a representative cloud computing memory caching
system, which has a highly scalable architecture for
clusters of servers. To compensate for an increas-
ing I/O gap, many applications aim to improve the
performance by adding a layer of caching systems
between the disks and the CPUs. In cloud comput-
ing platforms, such caching systems are naturally
distributed. However, Memcached’s performance re-
quires querying and processing all key-value pairs
in their original forms. This guarantees that it will
never lead to errors with the sacrifice of more mem-
ory consumption and time latency. In our work, we
develop the support for key-value storage in a dis-
tributed manner. Different from the centralized kBF,
such storage is no longer limited to a single machine
or a storage device. Instead, the data are distributed
over multiple servers that will collectively provide
storage needs.

In our design of the distributed kBF, we follow a
similar approach just like the centralized kBF in that
we do not require the returned key-values to be 100%
accurate, so that we can achieve a tradeoff between
speed and error rates. We call the resulting design
as d-kBF. The same as the kBF, the d-kBF could find
its applications in distributed storage systems with a
tolerance of low probability of errors. As mentioned
above, one typical application is the cache system, the
same with Memcached, whose primary purpose is to
speed up system responses. In the following, we first
present its architecture, followed by its implementa-
tion details.

5.1 Architecture of d-kBF
The architecture of d-kBF is shown in Figure 6, where
the whole d-kBF is represented by multiple slabs,
which is the same as the centralized kBF, stored on
multiple slab servers. Here, each slab keeps track of
a collection of (key,value) pairs. There is a frontend
master server and multiple backend slab servers. The
master server is responsible for allocating new slabs
and deleting empty slabs, while at the same time, it
keeps track of all slab locations. There are several slabs
stored in the memory of one storage server. Note that
for load-balancing purposes, slabs can also migrate
between servers.

We next describe how we implement distributed
operations in the d-kBF, including insert, query, delete
and update, with the usage of slabs. We use a two-
step hashing approach for this purpose. The first-step

Master Node Metadata

kBF Slab 
Server

kBF Slab 
Server

Client

Request for 
metadata

Metadata response

Updates and queries

Responses 
and data

Fig. 6. Distributed Key-Value Bloom Filter Architecture

hashing locates a slab for the k-v pair based on the
hashing value of the key. Once the slab is located,
the client will query the master node on the current
location of this slab. Then, the client will communicate
with the slab server directly, where the second-step
operation is the same as the centralized kBF.

5.2 Load balance
In cloud-computing environments, we assume that
each storage server has same storage capacity. To deal
with load balance, we want to achieve the scenario
where each server has nearly the same number of k-v
pairs stored. At the beginning, the master will assign
the same number of slabs to each storage server. Note
that as long as the first step hashing function of the d-
kBF operation is uniformly distributed, after insertion
of first batch of data, the number of k-v pairs in each
slab should be almost the same. Therefore, storage
imbalances across slabs can be effectively prevented
in the early stage of the d-kBF.

However, after more datasets and more operations
are performed, some slabs will have more k-v pairs
stored than others do. One approach to address this
problem is slab migration, where we allow slabs to
move between servers. However, finding the optimal
solution to the slab assignment based on their load is
NP-hard, as this is equivalent to the bin-packing or
knapsack problem. Therefore, we develop a greedy
algorithm to achieve query balances, as shown in
Algorithm 8.

The load balance algorithm works as follows. The
master node will perform re-balancing operations pe-
riodically with an interval of T . At the end of each
interval, master node calculates the aggregate number
of k-v pairs for each slab and each server. To measure
the imbalance, we use a metric ρ, by dividing the
standard deviation over the average value. The larger
ρ is, the more imbalanced the server storage are. The
goal of balance algorithm is to achieve a lower ρ, by
migrating slabs from heavily loaded servers to the less
loaded ones.

In each step of migration, we first choose two slabs,
one is the most loaded slab in the most heavily loaded
server, and the second one is the least loaded slab
in the least loaded server. Before making the actual
exchange, we calculate the new imbalance metric ρnew
after migration. If there is an improvement, i.e. a
lower ρ, the master node informs the two slab servers
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Algorithm 8 Query balancing algorithm
1: procedure QUERYBALANCE(q)
2: counter ← 1
3: calculate the number of total queries for each slab
4: calculate the number of total queries for each server
5: calculate the current load imbalance metric ρ
6: while True do
7: find one slab Smax on a most queried server
8: find one slab Smin on the least queried server
9: predicate the new imbalance metric ρnew

10: if ρnew > ρ then
11: break while
12: else if counter ≥ Cmax then
13: break while
14: else
15: exchange the two slabs
16: ρ ← ρnew

17: counter ← counter + 1
18: end if
19: end while
20: end procedure

to make exchanges, and updates their metadata ac-
cordingly. In addition, to avoid too much overhead,
we allow a second parameter, Cmax, that determines
the maximum number of exchanges that can be in-
curred at the end of each period. When the maximum
of slab exchange is achieved, the lowest ρ will be
returned.

In terms of time complexity of Algorithm 8, we
consider that both the number of servers and the
number of slabs on each server is constant, therefore
calculating the load imbalance metric ρ, as well as
finding the most heavily loaded slab and sever takes
constant time. Hence, the time complexity depends on
the maximum number of exchange, Cmax. Based on
our experiments, Cmax = 10 is an appropriate choice.

6 EXPERIMENT EVALUATION
In this section, we first present the evaluation of
operations of the kBF, including insert, query, delete,
update, join and compress. Due to the probabilistic
nature of the kBF, we focus on its errors. Specifically,
there are three types of errors: false positives, which
means that kBF returns an value for keys that haven’t
been inserted, false negatives, which means that the
kBF returns null value due to non-decodable errors,
and incorrect outputs, which means that kBF returns
incorrect values.

Next, we focus on the time and memory efficiency
of the kBF, by conducting comparison experiments
with Memcached [6]. Although the design of Mem-
cached and the kBF are quite different, they share
several similar characteristics: both of them are in-
memory key value store and support distributed de-
ployment, and they are able to support inserting,
querying and deleting one k-v pair in constant time.
All the similarities make the comparison reasonable.

We then evaluate the two encoding options men-
tioned in Section 3.5. We also study noise analysis
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of the kBF, in which we demonstrate that the errors
caused by the kBF is equivalent to the “intrinsic noise”
of the dataset. Finally for the d-kBF, we evaluate the
load balancing algorithm, and the experiment results
show that by slab migration, we could achieve more
balanced storage among servers.

6.1 Workload Generation

We generate the workload for experiments based on
the conclusions from a realistic study at Facebook [2].
Specifically, they studied several Memcached pools,
and found the statistical distribution of the largest
pool that contains general purpose key-value pairs.
The key-size distribution in terms of bytes was found
to be Generalized Extreme Value distribution with pa-
rameters μ = 30.7984, σ = 8.20449, and k = 0.078688.
The value-size distribution, starting from 15 bytes,
were found to be Generalized Pareto with parameters
θ = 0, σ = 214.476, and k = 0.348238. The first 15
bytes follow a discrete distribution with a specific
table (shown in [2]).

We generate 10 million k-v pairs where the size of
keys follow these reported statistical parameters, and
the values are intended to be the most frequent ones,
where a total of 3000 unique values are used. Note
that such frequent values will typically constitute a
majority of the (key, value) instances, for which the
kBF is targeted at. We keep the specific keys and
values random, so that the evaluation results are
the most generic. The number of k-v pairs n is 10
million, and we use a false positive probability p to
be between 0.001 to 0.000001 when we construct the
kBF. Therefore, the size of the kBF m and the number
of hash functions k can be decided [19].
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6.2 The kBF Evaluation Results

We start by inserting 10 million keys into a con-
structed kBF, and then query each key for its value to
obtain the error rates. To test the case when the kBF
has been overloaded, we also conduct the experiments
when gradually decreasing the size to half to analyze
the performance difference. We find that in these
cases, the incorrect output error is always zero when
the kBF has not been saturated, indicating that the
results are correct if they are decodable at all. The false
negative error rate is plotted in Figure 7. According
to this figure, the false negative errors almost do not
exist if the p-capacity is not violated. On the other
hand, if the size of the filter m is decreased linearly in
steps from 0.9m to 0.5m, the false negative errors are
increasing exponentially, meaning that the decoding
process gives more null results. This is as expected,
as in this case, the kBF is over-crowded.

To obtain the false positive error rate, i.e., the rate of
obtaining valid values for incorrect keys, we generate
another 10 million non-existent keys, and query them
over the kBF that is populated with the first 10 million
keys. If the kBF ever returns a valid encoding, we
consider this as a false positive error. The results are
shown in Figure 8. Observe that if the p-capacity is
not violated, the false positive rate is close to the value
of p (the conventional bloom filter false positive rate)
in their order of magnitude. On the other hand, if the
size of m is reduced, the false positive rate becomes
higher, as we expected.

We next investigate the effects of deletions of keys.
Specifically, we delete the 10 million inserted keys in
batches, each has 1 million keys. We then query the
deleted keys after each deletion, and plot the false

positive ratios. Figure 9 and Figure 10 show the results
for normal and half size of kBF. Observe that for a
smaller p, the performance tends to be much better.

We also evaluate the effects of update operations.
Similar to the delete operations, we update keys with
new values in batches and we are interested in false
negatives, which refer to null values. The results are
plotted in Figure 11 and Figure 12. Observe again that
the performance will be much better for smaller p
values and larger m sizes.

We next evaluate the join and compress operations.
Note that the compress operation is a special case of
the join operation in the sense that it is implemented
as the first half and second half of the kBF conducting
the join operation.

We use the metric of capacity coefficient ρ men-
tioned in Section 4 to conduct the experiments with
the following procedures. We use the ρ of two kBFs,
d1 and d2, as the evaluation parameter, and conduct
the join operation of these two kBFs, yielding the
combined kBF as djoin. Next we query djoin with all
the k-v pairs that have been inserted to d1 and d2.
Note that since djoin loses some information com-
pared to d1 and d2, we expect some queries will
result in false negative errors (non-decodable errors),
which are shown in Figure 13. Note that the k-v pairs
inserted to d1 and d2 are different, which makes sense
in a way that we don’t insert duplicate k-v pairs
in applications. According to the experiment results,
when the capacity coefficient threshold is below 0.5,
the aggregate capacity coefficient of djoin is under 1,
the error rate is almost zero. On the other hand, when
the ρs of d1 and d2 are beyond 0.5, the p-capacity
of djoin is no longer maintained, where the number
of false negative error increases exponentially. The
experiment results are consistent with Figure 7, where
we decrease the size of the kBF to intentionally violate
the p-capacity rule, leading to more errors.

We also perform similar experiments for the com-
press operation, where we set the size of the kBF as
an even number. Similar to the join operation, for
different capacity coefficients, we combine the first
half and second half of the kBF, and plot the errors
shown in Figure 14. Due to the same reasoning, we
have very similar results compared to join operation.

6.3 Comparison with Memcached
In order to demonstrate the time and memory ef-
ficiency of the kBF, we choose Memcached, one of
state-of-art k-v stores as reference to conduct the
comparison experiments. First, we compared the time
efficiency, i.e, the time to insert, query and delete key-
value pairs, and the results are shown in Figure 15.
According to the results, the time of both the kBF and
Memached increases almost linearly as the number of
k-v pairs increases, which indicates constant time for
each k-v pair. More importantly, the kBF is almost 10
times faster than Memcached.
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In terms of memory usage, we conduct the exper-
iments in the following way: Memcached normally
works as a cache system in that it first allocates fixed
memory space for k-v stores and will delete the least
recently used (LRU) key-value pairs when it is full.
However, it also can be configured as a k-v store, and
reports errors when the storage is full. We use the
latter setting, and keep record on how many pieces
of records it has stored. Next, we conduct the kBF ex-
periments to store the same amount of data and then
keep record of the memory usage of the kBF, where
we show the results in Figure 16. Note that for the kBF,
there are three types of memory usage, the main kBF,
the secondary kBF and the (encoding, value) mapping.
The Memcached size is in the range from 64MB to
1024MB, and compared to Memcached, the overall
size of kBF could save 30.33% memory on average.

6.4 Evaluation of two decoding options

As mentioned in design section, when there are over-
lapping encodings inserted to the same cell of the
kBF, the procedure of decoding is needed. We have
two options, either only decoding two superimposed
encodings, or using the Algorithm 7. Intuitively, we
get more non-decodable errors using the first option
if the kBF is crowded, but we require more compu-
tation and memory resources for the second option.
To evaluate their differences, we conduct the query
operation with the same 10 million key-value pairs,
and set the size of the kBF to be half of its normal
size, so that the kBF is overloaded. We then compare
the false negative error ratio and the memory used,
and plot the results in Figure 17 and Figure 18. In
the results, we obtain fewer false negative errors by
almost an order of magnitude by using the second

option, while we spend 21% more memory usage on
average as additional overhead.

6.5 Resilience to Noise

Since the kBF would inevitably return errors, we
evaluate how reliable the data is in performing certain
APIs. If we regard errors caused by inaccurate data
access as “query noise” as compared to the “intrinsic
noise” that all data has, then as long as the query
noise does not disrupt the behavior of the intrinsic
noise, the queried data is considered “reliable”.

We have conducted such a study where statistical
features are extracted from both the accurate data and
the query data through kBF to statistically compare
the intrinsic differences as an indicator of data re-
liability. We used a real dataset from CAIDA [21],
which includes an hour long network traffic data
with the source and destination IP address serving
as flow-id, and the TCP flag as the state. A total
number of n = 246, 539 unique flows were used. We
then restructured the n data entries into a matrix of
dimension 496× 496 in a raster scan manner (so that
the data can be viewed as an image) and used a non-
overlapping patch size of 8 × 8 as the basic unit to
extract statistical features of the data. The features
we used are the popular Hu’s invariant moments [22]
where a set of seven values are calculated based on
the pixel intensities (i.e., the data entry). The feature
vector is formulated to be invariant under translation,
scale, and rotation. Figure 19 shows the Euclidean
distance between the feature vectors derived from any
pair of patches belonging to the accurate data and
the queried data, respectively, with the false positive
probability being 0.01, 0.001, and 0.0001. We observe
that as the false positive probability decreases, the
Euclidean distance between patches from the two
data sources show less and less number of sporadic
peaks and eventually no peaks when p = 0.0001,
showing the similarity between the two data sources
in statistical measures.

6.6 Evaluation of d-kBF

For the evaluation of the d-kBF, we focus on the
performance of designed load balance algorithm. Sup-
pose each slab has the capacity of 10 million k-v
pairs, and we have 5 severs, each of them has stored
10 slabs. Therefore, the overall d-kBF could store up
tho 500 million k-v pairs. First, we assign a random
number of k-v pairs to each slab, yet don’t exceed
its capacity, and calculate the initial imbalance ratio
ρ. After conducting the load balance algorithm, we
compare the resulted ρ to the original one. Figure 20
shows the number of k-v pairs each sever stores before
and after the algorithm. As there are multiple steps
of slabs migration, Figure 21 shows the variation of ρ
during each step, where the ρ is keep decreasing.
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Fig. 19. The Euclidean distance of Hu’s invariant moments of patches belonging to accurate data and queried
data.
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Next, we evaluate the performance of algorithm
in different initial settings. We generate 100 sets of
number of k-v pairs the servers stored and then
conduct the algorithm. Figure 22 demonstrates the
imbalance ratio ρ before and after the algorithm, and
Figure 23 shows the sorted improvement percentage
of ρ. The average improvement is 60.86%. Note that
during some initial settings, there is no improvement
since the original ρ is small enough, indicating the
storage among all servers is fairly balanced. Other
than that, we could gain large decrease of ρ, especially
under those very imbalanced initial settings.

7 APPLICATION CASE STUDY: TCP FLOW
ANALYSIS

In this section, we describe how to use the kBF for
a concrete application. We implement an approxi-

mate concurrent state machine (ACSM) [23] based on
the kBF, and compare it with the original approach
in [23], which we refer to as the state-based bloom
filter (sBF). Note that we can use state machines
for various purposes, ranging from user application
behavior modeling, to large-scale and distributed in-
trusion detection. As a proof-of-concept study, for
our evaluation, we use this ACSM to analyze a real
dataset from CAIDA [21], which includes an hour
length of traffic data. The pair of the source and
destination IP address is used as flow-id, and the
TCP flag is used as the state. Note that such traffic
analysis and intrusion detection is crucial for the
security and integrity of modern cloud computing
service providers, and for defending against large-
scale attacks [24], [25] [26] [27] [28].

Specifically, the experiment has the goal of locating
suspicious TCP flows by using TCP flags. This tech-
nique has been utilized in different network monitor-
ing scenarios, such as SNORT database [29] and TCP
SYN flooding attacks [30]. Whenever the specified
TCP flags indicate potential problems, a warning can
be generated.

To detect such problems, we emulate the state
transitions of TCP flows with ACSMs. Whenever a
flow is encountered, we query the flow on its state.
If it is a new flow, we insert this flow and its state
into the kBF (or the sBF [23]). If this flow is old, we
will selectively update its state depending on the flow
information. When a flow terminates, we delete its
state information. All insert, update, query, and delete
operations are readily supported by both the kBF and
the sBF. To compare them, we choose four different
preset false positive probability p from 0.1 to 0.00001
to conduct experiments. The total number of flows, n,
is 908522.

The performance gap between the kBF and the sBF
is mainly in false negative errors. According to Fig-
ure 24, as the preset p value decreases, false negative
errors of the kBF decreases dramatically. However,
false negative errors of the sBF almost stay constant,
due to that it simply returns null value for those cells
with two or more flows. Furthermore, in its update
process, false negative errors will accumulate due to
previous overlappings, which leads to almost invari-
ant false negative errors even though the size of bloom
filter increases. The kBF, in contrast, still maintains
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part of the flow information even when three or more
encodings are superimposed, as individual encodings
can still be recovered later if delete operations occur.
Figure 25 shows the total errors of the kBF and the
sBF. Again, we observe that the kBF performs much
better in terms of reducing errors.

Finally, in terms of finding suspicious flows with
certain TCP flags, after querying state of each flow, we
find that there are 900 and 1658 flows with the flags of
FIN and RST accordingly in the dataset. These flows
can be marked with suspicious for further analysis.

8 CONCLUSIONS

In this paper, we present the design, implementation,
analysis, and evaluation of the kBF, an approximate
key-value store service for cloud computing plat-
forms, by using the classic bloom filter as a base
design. We present the design of the kBF including
both centralized and distributed versions, analyze its
performance in storing large datasets, and evaluate
its performance in both synthetic workloads and a
real application study. According to our experiment
results, the kBF is highly compact, and supports in-
sertion, query, update and deletion operations with
adjustable error ratios. Compared to deterministic
schemes, the kBF is more suitable to be implemented
in memory for fast speeds, as long as approximate
results are tolerated by application semantics. We also
demonstrate, through an application case study for
detecting suspicious TCP flows, the kBF performs
much better than the related approach in the literature
in terms of error rates. Therefore, we believe that our
study of the kBF can be beneficial for fast and low
overhead key-value storage purposes for a wide range
of applications, and valuable especially for large-scale
cloud service providers.
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