Recursive Low-rank and Sparse Recovery of Surveillance Video using Compressed Sensing

Shuangjiang Li, Hairong Qi

Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville

Oct. 1, 2014

8th ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC), Venezia, Italy

Outline

- Background and Motivation
- 2 Problem Formulation
- 3 The Proposed Algorithm rLSDR
- Experimental Results
 - 5 Conclusions

Outline

Background and Motivation

- Problem Formulation
- 3 The Proposed Algorithm rLSDR
- 4 Experimental Results
- 5 Conclusions

Background on SCNs

Smart Camera Networks (SCNs) have been traditionally used in surveillance and security applications, where a plural of cameras are deployed and networked with each other through wireless connections.

Figure: An illustration of SCNs.

Background on SCNs (cont'd)

- The ability to detect anomalies and moving objects in a scene automatically and quickly is of particular interest.
- Detection of moving objects is a well-established problem. (e.g., background subtraction, object segmentation, and sequential estimation for the objects of interest)
- Due to the growing availability of cheap, high-quality cameras, the amount of data generated by the video surveillance system has grown drastically.
- The challenge arises on how to process, store or transmit such enormous amount of data under real-time and bandwidth constraints.

4 / 32

Motivation

-A Compressed Sensing(CS) approach for SCNs object detection

- Multiple number of cameras with wireless connection need transmit surveillance videos to a processing center, at the same time, most of the data is uninteresting due to inactivity (e.g., background).
- It is imperative for SCNs to transmit a small amount of data with enough information for reliable detection and tracking of moving objects or anomalies.
- CS approach for object detection.

Figure: Compressed sensing recovery for object detection in SCNs framework.

Motivation

-A Compressed Sensing(CS) approach for SCNs object detection

Figure: Compressed sensing recovery for object detection in SCNs framework.

- The reconstructed video consists of a low-rank part which corresponds to the background and the sparse part, which is the object of interest.
- CS recovery on a single frame for initial estimation, then recursively recover the low-rank and sparse component in the entire video.

Background on CS Recovery

-Signal Sparse Coding/Representation and Recovery

Assume a signal $x \in \mathcal{R}^N$ can be represented as $x = \Psi \alpha$, where $\Psi \in \mathcal{R}^{N \times M} (N < M)$ is a basis or an over-complete dictionary, and most entries of the coding vector α are zero or close to zero.

$$\alpha_x = \arg\min_{\alpha} \{ \|x - \Psi\alpha\|_2^2 + \lambda_{\alpha} \|\alpha\|_1 \}$$

In CS recovery, what we observe is the projected measurement y via $y=\Phi x+\nu.$ Needing to solve,

$$\hat{\alpha} = \arg\min_{\alpha} \{ \|y - \Phi \Psi \alpha\|_2^2 + \lambda_{\alpha} \|\alpha\|_1 \}$$

then x is reconstructed by $\hat{x}=\Psi\hat{\alpha}.$

Problem Formulation

-Foreground and Background of a Frame

A video sequence consists of a number of frames (i.e., images).

- Let $x_t \in \mathbb{R}^{m \times n}$ be a vector formed from pixels of frame t of the video sequence, for $t = 1, \dots, T$, where T is the total number of frames, m and n are the dimensions of each frame.
- The current frame x_t , is an overlay of foreground image, F_t , over the background image, B_t .
- The goal is to recover both F_t and B_t at each time frame t in real-time.
- Many foreground pixels are zero and hence F_t is a sparse matrix. We let T_t denote the foreground support set, i.e., T_t := {i : (F_t)_i ≠ 0}.

$$(x_t)_i := \begin{cases} (F_t)_i & \text{ if } i \in T_t \\ (B_t)_i & \text{ otherwise} \end{cases}$$

Problem Formulation

-CS Recovery on a Single Frame

• Assume, each frame can be re-arranged as an $N \times 1$ vector (i.e., $N = m \times n$). Let Φ_t be an $M \times N$ CS measurement matrix, where M < N.

$$y_t = \Phi_t x_t \tag{1}$$

where y_t is a vector of length M.

• To recover x_t from y_t , first y_t is sparsely coded with respect to the basis $\Psi \in \mathbb{R}^{N \times N}$ by solving the following minimization problem

$$\hat{\alpha} = \arg\min_{\alpha} \{ \|y_t - \Phi_t \Psi \alpha\|_2^2 + \lambda_\alpha \|\alpha\|_1 \}$$
(2)

and then x_t is reconstructed by $\hat{x}_t = \Psi \hat{\alpha}$.

Problem Formulation

-Low-rank and Sparse Components of a Frame

• Let μ_t denote the mean background image and let $L_t := B_t - \mu_t$

$$(S_t)_i := \begin{cases} (F_t - B_t)_i = (F_t - \mu_t - L_t)_i & \text{if } i \in T_t \\ 0 & \text{otherwise} \end{cases}$$
(3)

• Let $M_t := \hat{x}_t$ be the frame t reconstructed from CS recovery algorithm with mean subtracted, then

$$M_t := S_t + L_t \tag{4}$$

• Here, S_t is a sparse vector with support set T_t , and L_t are dense matrices lie in a slowly changing low dimensional subspace.

Outline

- Background and Motivation
- Problem Formulation
- 3 The Proposed Algorithm rLSDR
 - 4 Experimental Results
 - 5 Conclusions

Section Outline

We propose the recursive Low-rank and Sparse Recovery using Douglas-Rachford splitting (rLSDR) that consists of three major components.

- Component 1: Single frame recovery
 - CS image recovery
 - Nonlocal means filtering
 - Nonlocal Douglas-Rachford splitting (NLDR) algorithm
- Component 2: Fast low-rank background initialization
- Component 3: Recursive sparse recovery and background update

CS Image Recovery

Direct approach: reshape 2D images in 1D vector

- the curse of dimensionality (e.g., a 512×512 image $\Rightarrow 262, 144$ dim.). Computational Complexity!!
- need to store a large random measurement operator (e.g., $\Phi \in \mathcal{R}^{0.3*262,144 \times 262,144}$). Storage Problems!!

"Divide and conquer" approach

The image is divided into small patches with size of $B \times B$, and sampled with the same random measurement operator^a.

- lose the global structure of an image
- cause blocking artifacts and need extra smoothing process
- result in low recovery PSNR

^aLu Gan, "Block compressed sensing of natural images," in International Conference on Digital Signal Processing, IEEE, 2007

The Proposed NLDR Algorithm

We propose the NLDR (NonLocal Douglas-Rachford Splitting) for SCNs CS image recovery.

- Block-based approach (using Iterative Soft Thresholding¹) to reconstruct the image first (intermediate result).
- Instead of treating each block as a separate/individual sub-CS recovery task. We propose to group similarity patches into a low-rank patch matrix and conduct low-rank estimation (i.e., denoising to prevent the noise from accumulating).
- Each denoised patch is then combined with CS measurement constraints to further improve the frame recovery result.
- We propose to solve the above problem using Douglas-Rachford Splitting method.

¹ I. Daubechies et al., An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, 2004

Nonlocal Means Filtering

- Take advantage of the high degree of redundancy/self-similarities of any natural image for denoising purpose by Buades².
- Given two image patches centered at pixel p_i and p_j , we calculate the similarity of the intensity gray level within a window size $B \times B$.

$$\omega_{ij} = \frac{1}{c_i} \exp(\frac{-\|p_i - p_j\|_2^2}{h^2}), \ j = 1, \cdots, q$$
(5)

q is the number of similar patches, h is scalar and c_i is the normalization factor.

Figure: The illustration of the nonlocal means filtering.

 $^{^2}$ Buades et al. "A review of image denoising algorithms, with a new one," Multiscale Mod. & Simu., 2005

Patch Denoising using Low-rank Approximation

Figure: An illustration of nonlocal estimation and similar patches denoising using low-rank matrix approximation.

$$\boxed{\min_{\hat{B}_i} \frac{1}{2} \|\hat{B}_i - B_i\|_2^2 + \lambda_{B_i} \|\hat{B}_i\|_*}$$

• $\|\hat{B}_i\|_*$ is the nuclear norm • $\|\hat{B}_i\|_* \triangleq \operatorname{trace}(\sqrt{\hat{B}_i^T \hat{B}_i}) = \sum_{r=1}^q \sigma_r$, where σ_r are the singular values of \hat{B}_i .

ICDSC'14

From Patch to Image

- For each patch p_i , we have a set of its similar patches, denoted by Ω_i . Then the nonlocal estimates of each patch \hat{p}_i can be computed as $\hat{p}_i = \sum_{j \in \Omega_i} \omega_{ij} p_{i,j}$
- Further, this can be written in a matrix form as

$$\hat{x}_{i} \doteq \mathbf{W} \sum \hat{p}_{i}, \ \mathbf{W}(i, j) = \begin{cases} \omega_{ij}, \ \text{if } x_{j} \in \Omega_{i} \\ 0, \ \text{otherwise.} \end{cases}$$
(6)

where \hat{x}_i is the nonlocal estimated single video frame output.

Incorporating CS Measurement Constraint

-From Patches to Image

- Since the columns of B_i (or patches) are also a subset of the reconstructed image from IST recovery algorithm, it should subject to the CS measurement constraint $y = \Phi x$.
- Multiple ${f W}$ on both sides

$$\min_{\hat{B}_i} \frac{1}{2} \|\hat{B}_i - B_i\|_2^2 + \lambda_{B_i} \|\hat{B}_i\|_*$$

• We formulate the denoising problem as

$$\min_{x} \frac{1}{2} \|x - \mathbf{W}B_i\|_2^2 + \lambda_x \|x\|_* \text{ s.t. } y = \Phi x$$

• W is a patch reweighting matrix

ICDSC'14

We use Douglas-Rachford Splitting (DR) to solve Eq (7).

- Commonly use gradient or projection based method (i.e., POCS).
- DR uses *proximity operator* prox_f (extend the projection operator to general case), for example, soft thresholding operations can not be solved using convex projection.
- DR is an iterative scheme to minimize two convex functions with rate of convergence $\mathcal{O}(1/k), k$ is iteration number.
- We propose to use DR and divided the problem into two convex functions (where the *proximity operators* are available) and solved the problem.

• $F(x) = \iota_{\mathcal{C}}(x)$ and $G(x) = ||x||_*$, where $\mathcal{C} = \{x : \Phi x = y\}$ and $\iota_{\mathcal{C}}$ is the indicator function

$$\min_{x} \frac{1}{2} \|x - \mathbf{W}B_i\|_2^2 + \lambda_x \|x\|_* \text{ s.t. } y = \Phi x$$

-Proximity Operators

• Given that $F(x) = \iota_{\mathcal{C}}(x)$, $\operatorname{prox}_{\gamma\iota_{\mathcal{C}}F}(x)$ is the same as projections onto convex sets (POCS), and does not depends on γ .

$$\operatorname{prox}_{\gamma\iota_{\mathcal{C}}F}(x) = \operatorname{prox}_{\iota_{\mathcal{C}}F}(x) = x + \Phi^+(y - \Phi x)$$

where $\Phi^+ = \Phi^T (\Phi \Phi^T)^{-1}$.

• The proximal operator of ${\cal G}(x)$ is the soft thresholding of the singular values

$$\mathrm{prox}_{\gamma G}(x) = U(x) \rho_{\lambda_x}(S(x)) V(x)^*$$

where $x = USV^*$ is the singular value decomposition of the matrix xand $S = \text{diag}(s_i)_i$ is the diagonal matrix of singular values s_i . $\rho_{\lambda_x}(S(x))$ is defined as a diagonal operator.

$$\rho_{\lambda}(S) = \mathsf{diag}(\max(0, 1 - \lambda_x / |s_i|) s_i)_i \, \Big| \,$$

-Iterations

• We can then solve the problem in Eq (7) using the Douglas-Rachford iterations given by

$$\tilde{x}_{k+1} = (1 - \frac{\mu}{2})\tilde{x}_k + \frac{\mu}{2}\mathsf{rprox}_{\gamma G}(\mathsf{rprox}_{\gamma F}(\tilde{x}_k))$$
(8)

- Then the (k + 1)-th solution \hat{x}_{k+1} is calculated by $\hat{x}_{k+1} = \operatorname{prox}_{\gamma F}(\tilde{x}_{k+1})$, where \tilde{x}_0 is the output of IST recovery result.
- Here the reversed-proximal mappings is given by $\operatorname{rprox}_{\gamma F} = 2\operatorname{prox}_{\gamma F} x$ for F(x) and G(x) respectively.
- Set $\lambda_x > 0$ and $0 < \mu < 2$ which guarantee \hat{x} is a minimizer.

Single Frame Recovery Algorithm - NLDR

Algorithm 1: NLDR Algorithm

Input:

- CS Measurement matrix: $\Phi_t \in \mathbb{R}^{M \times N}$
- ▶ Basis matrix: $\Psi \in \mathbb{R}^{N \times N}$
- Measurements: $y_t \in \mathbb{R}^M$
- ▶ # of iterations: iter.

Output:

- An estimate $\hat{x}_t \in \mathbb{R}^N$ of the original single frame x_t .
- 1: Obtain an initial recovery \hat{x}_{IST} from IST
- 2: Initialize $\hat{x}_{nl} \leftarrow \hat{x}_{IST}$
- 3: Calculate nonlocal weights ω_{ij} using Eq. (5)
- 4: Update $\hat{x}_{nl} \leftarrow \mathbf{W}\hat{x}_i$ using Eq. (6)
- 5: for $k = 0, 1, 2, \cdots$, iter do
- 6: Initialize $\tilde{x}_0 \leftarrow \hat{x}_{nl}$
- 7: Calculate \tilde{x}_{k+1} using Eq. (8)
- 8: end for

9: return $\hat{x}_t \leftarrow \tilde{x}_{k+1}$

Low-rank Component Initialization

- The second component of the proposed rLSDR algorithm is to estimate the low-rank background image based on a few recovered video frames. (e.g., first 50 frames)
- The common approach would be applying SVD on the recovered video frames
 - Performing SVD operation is usually very time-consuming, especially for large resolution video frames which hinders the "on-the-fly" estimation.
 - Often we just need a rough estimation of the low-rank component which can later be refined upon receiving new video frames.

Bilateral Random Projections (BRP) based Low-rank approximation

• Given r bilateral random projections of a $p \times q$ dense matrix X (w.l.o.g, $p \ge q$), i.e., $U = XA_1$ and $V = X^TA_2$, where $A_1 \in \mathbb{R}^{q \times r}$ and $A_2 \in \mathbb{R}^{p \times r}$ are random matrices,

$$L = U(A_2^T U)^{-1} V^T$$
 (9)

is a fast rank-r approximation of X.

• The L in Eq. (9) has been proposed by Fazel et al. ³ as a recovery of a rank-r matrix X from U and V, where A_1 and A_2 are independent Gaussian or subsampled Fourier random matrices.

³Fazel et al. Compressed Sensing and Robust Recovery of Low Rank Matrices, 2008

Recursive Sparse Recovery and Low-rank Updates

- After the low-rank background component L_t has been estimated, we then recursively update the sparse component and background estimation upon receiving the CS measurements y_{t+1} of new frame x_{t+1} .
- The CS recovered new frame \hat{x}_{t+1} is obtained using the proposed NLDR algorithm.
- The sparse recovery problem to find S_{t+1} can be formulated as follows

$$\min_{S_{t+1}} \frac{1}{2} \| \hat{x}_{t+1} - L_t - S_{t+1} \|_2^2 + \lambda_s \| S_{t+1} \|_1
s.t. \quad \| y_{t+1} - \Phi_{t+1} (L_t + S_{t+1}) \|_2^2 \le \epsilon$$
(10)

where L_t is estimated background at the frame t.

• The only unknown in Eq. (10) is S_{t+1} , which can be solved using NLDR algorithm to estimate \hat{S}_{t+1} .

Summary of the rLSDR Algorithm

Algorithm 2: rLSDR Algorithm

Input:

- ► CS Measurement matrix: $\Phi_t \in \mathbb{R}^{M \times N}$. ► Measurements data matrix: $y_t \in \mathbb{R}^{M \times p}$
- Initialize random matrices: A_1, A_2 ,

Output:

- ▶ CS recovered frames: $\hat{x} \in \mathbb{R}^{N \times p}$,
- ▶ Background and object estimate: \hat{L}, \hat{S} .
- 1: Step 1: Initial frame recovery
- 2: for $i = 1, \cdots$, trn do
- 3: $X(1: trn) \leftarrow \mathsf{NLDR}(y_i)$
- 4: end for
- 5: Step 2: Background initialization
- 6: Estimate L using Eq. (9)
- 7: Step 3: Recursive update L and S
- 8: for $t = trn, \cdots, p$ do
- 9: Frame recovery: $\hat{x}_{t+1} \leftarrow \mathsf{NLDR}(y_{t+1})$
- Sparse est.: Solve Eq. (10) for \ddot{S}_{t+1} using NLDR 10:
- 11: Calculate L_{t+1} : $L_{t+1} = \hat{x}_{t+1} - \hat{S}_{t+1}$, update Eq. (9)
- 12: Background est.: $\hat{L}_{t+1} = L(t+1)$
- 13: end for
- 14: return $\hat{x}, \hat{L}, \hat{S}$

► Number of training frames: trn.

Outline

- Background and Motivation
- Problem Formulation
- 3 The Proposed Algorithm rLSDR
- 4 Experimental Results
 - 5 Conclusions

Experimental Results

-Experiments Settings

- We apply **rLSDR** to two surveillance videos ⁴ Restaurant and Curtain.
- *Curtain* consists of 304 frames each of dimension 64 \times 80, *Restaurant* contains 200 frames with dimension 144 \times 176.
- We first experiment on the single frame recovery result by comparing **NLDR** with two popular CS image recovery algorithms, BCS-SPL ⁵ and TVNLR ⁶.
- We then experiment on video object detection and compare results with Principal Component Pursuit (PCP) ⁷ and ReProCS (using ADMM) ⁸.

⁴_http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html

⁵ J. Fowler, Block compressed sensing of images using directional transforms. 2009.

⁶_J. Zhang, Improved total variation based image compressive sensing recovery by nonlocal regularization. 2013.

⁷Candès et al. Robust principal component analysis? 2011

 $^{^{8}}$ C. Qiu, ReProCS: A missing link between recursive robust PCA and recursive sparse recovery in large but correlated noise. 2011

Experimental Results

-Experiments Settings (cont'd)

- The block-based image patch is of size 6×6 . We set the number of similar patches q in the nonlocal estimation step as 45.
- We use the scrambled Fourier matrix as the CS measurement matrix Φ and DCT matrix as the basis Ψ to represent the original image in the initial IST recovery.
- The parameter is selected as $\mu = 1$ for DR iteration and $\lambda_f = \frac{c_i}{\max(s_i)}$ for each iteration where $c_i = C_0 * \epsilon, 0 < \epsilon < 1$ and C_0 is a constant.

Experimental Results

-PSNR Performance

Figure: Averaged per frame recover result comparison on (a) Restaurant (b) Curtain.

28 / 32

Experimental Results: Background and Object Detection

Figure: First column: original *Restaurant* video frames at t = 70, 116, 140. Second column: frame recovered by **NLDR** with 30% measurements. Next 2 columns: background and object estimated by **rLSDR**. *Restaurant* uses first 50 training frames to initialize the background.

Experimental Results: Object Detection Comparison

Figure: First column: original *Curtain* video frames at t = 65, 103, 140. Second column: frame recovered by NLDR with 30% measurements. Next 6 columns: background and object estimated by rLSDR, PCP and ReProCS respectively.

Outline

- Background and Motivation
- Problem Formulation
- 3 The Proposed Algorithm rLSDR
- 4 Experimental Results
- 5 Conclusions

Conclusion

- We presented rLSDR, a CS-based surveillance video processing algorithm to recursively estimate the low-rank background and sparse object. The spatial and temporal low-rank features of the video frame were successfully exploited.
- Capitalized on the self-similarities within each spatial frame, we proposed **NLDR** for the single frame CS recovery that had high recovery PSNR under various sampling rates compared with the-state-of-art recovery algorithm.
- We then proposed rLSDR that recursively estimates the background through efficient bilateral random projection (BPR) for background initialization.

Thank you! Any questions?