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Abstract—This paper focuses on detecting activated voxels in
fMRI data by exploiting the sparsity of the BOLD signal. Due
to the large volume of the data, we propose to learn a dictionary
from the compressed measurements of the BOLD signal. The
solution to the inverse problem induced by the General Linear
Model is then sought through sparse coding using the double
sparsity model, where sparsity is imposed on both the learnt
dictionary and the generated coefficients. The estimated sparse
coefficients are then used to decide whether or not a stimulus is
presented in the observed BOLD signal. Experimental results on
real fMRI data demonstrate that the proposed method leads to
similar activated regions as compared to those activated by the
Statistical Parametric Mapping (SPM) software but with much
less samples needed.

Index Terms—Compressed sensing, fMRI activation detection,
dictionary learning, double sparsity

I. INTRODUCTION

In functional Magnetic Resonance Imaging (fMRI),
an fMRI scanner measures the blood-oxygenation-level-
dependent (BOLD) signal at all points in a 3-D grid. It has
been widely accepted as a noninvasive technique for localizing
brain voxels activation. A typical fMRI dataset is usually
composed of time series (BOLD signals) of tens of thousands
voxels [1]. Such high volume has become quite a burden
for existing fMRI research where statistical analysis is often
conducted to detect which voxels are activated by a task or
stimulus.

The General Linear Model (GLM) is a classical univariate
approach toward the detection of task-related activations in the
brain. Under this approach, a linear model is fit to the fMRI
time series of each voxel resulting in a set of voxel-specific
parameters, which are then used to form statistical parametric
maps (SPMs) [2].

Recently, there has been a growing interest in the fMRI data
analysis based on sparse representation of BOLD signal [3]–
[5]. Specially, Daubechies, et al. [3] showed that the most
influential factor for the ICA algorithm is the sparsity of
the components rather than independence, and suggested to
develop decomposition methods based on the GLM where the
BOLD signal may be regarded as a linear combination of a
sparse set of brain activity patterns. As a result, Lee et al. [5]
proposed a data-driven sparse GLM for fMRI data analysis,
Guillen et al. [4] utilized the ℓ0-regularized Least Absolute
Deviation (ℓ0-LAD) to solve for sparse representation coeffi-
cient under the GLM setting.

Compressed Sensing (CS) is a new methodology to capture
signals at lower rate than the Nyquist sampling rate when the
signals are sparse or sparse in some domain [6], [7]. In [8],
the sparsity of MRI signals has been exploited that resulted
in the reduction of the scan time and the improvement of the
resolution of MR imagery.

In this paper, we propose a compressed dictionary learning
(CDL) approach, where the problem of detecting activated
voxels is addressed using sparse representation of BOLD
signals with a learnt dictionary. The high volume problem of
the signal is handled using CS, where the dictionary is learnt
only from the compressed measurements of the BOLD signal.
The solution to the inverse problem induced by GLM is then
sought through sparse coding using the double sparsity model,
where sparsity is imposed on both the learnt dictionary and
the BOLD signal sparse representation coefficients. Our con-
tribution in this work is two-fold. First, we use the compressed
measurements to learn the dictionary. Second, we adopt sparse
coding based on double sparsity model. Specifically, our
method requires much less samples to effectively detect the
voxel activations. In addition, no prior assumptions of the
task-related stimulus (i.e., design matrix) are needed since
it is automatically incorporated in the learnt dictionary. The
avoidance of the task-related stimulus is the key enabler for
practical adoption of the proposed approach. For example, the
patient that goes through the fMRI experiment for medical
treatment could be in coma, the task-related stimulus would
not function in this case.

The rest of this paper is organized as follows. In Section II,
we introduce the GLM approach and how to detect activations
based on the GLM output. In Section III, we discuss the
proposed compressed dictionary learning (CDL) approach for
activation detection. Performance evaluation on using SPM
analysis and CDL are shown in Section IV. Section V con-
cludes the paper.

II. THE GENERAL LINEAR MODEL APPROACH

A widely used statistical method for analyzing fMRI time
series is the general linear model. It models the time series
as a linear combination of several different signal components
and tests whether activity in a brain region is systematically
related to any of these known input functions for each voxel
in an fMRI imaging system. More precisely, the GLM for the
observed response variable yj at voxel j, j = 1, · · · , N , is



given by:
yj = Xβj + ej (1)

where, yj ∈ RM with M being the number of scans,
X ∈ RM×L denotes the design matrix, βj ∈ RL represents
the signal strength at the j-th voxel, and ej ∈ RM is the
noise. Typically, each column of the design matrix X is
defined by the task/stimulus-related function convolved with
a hemodynamic response function (HRF), i.e., the predicted
task related BOLD response [2]. Basically, the design matrix
is constructed with the expected task-related BOLD response
as described above. Sometimes we also add extra columns to
the design matrix with nuisance components that model the
confounding effects. The stimulus is assumed to be equivalent
to the experimental paradigm, while the HRF is modeled using
a canonical HRF, typically either a gamma function or the
difference between two gamma functions [2].

Under GLM, various methods for estimating β may be
used. The Ordinary Least Squares (OLS) has been traditionally
adopted where no prior information is applied:

βj = (XTX)−1XT yj (2)

In order to identify columns of interests that corresponding
to the task-related design in the contribution of the BOLD
signal, a contrast vector c = [c1, c2, · · · , cL] is applied on the
estimated coefficient β̂j by cT β̂j . This hypothesis testing is
then performed on a voxel-by-voxel basis using either a t-test
or F-test. The resulting test statistic will then be calculated
and formatted in an image termed statistical parametric map
(SPM).

III. THE CDL APPROACH

In this section, we first give an illustration example on
the result generated using CDL as compared with existing
algorithms based on fixed design matrix. We then present the
CDL problem formulation as well as methods on how to solve
it by transforming it into the standard LASSO problem [9].

A. A Motivating Example

In order to gain some insight on the performance of the
OLS and ℓ0-LS (i.e., sparse decomposition but still using
fixed design matrix) and the proposed CDL approach when
the parameter vector is sparse, we generate some synthetic
BOLD signal, as shown in Fig. 1. We model the fMRI time
series z of a particular voxel as a sparse linear combination of
various stimuli and additive noise. That is, z = Xα+ϵ, where
α is a sparse vector of length L = 13 and a support 3 (i.e.,
only 3 entries in α are non-zero). Thus, the voxel related to
the observed time series z is activated by three stimuli. Given
a design matrix X which corresponds to an experimental
design, we are interested in identifying the stimuli in the
design matrix that activate the corresponding voxel as well
as the contributions of those stimuli (i.e., coefficients). We
follow the same procedures as in [4] and use all 13 convolved
task functions obtained from Pittsburgh Brain Activity Inter-
pretation Competition 2007 (PBAIC 2007) [10] to generate
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Fig. 1: Solution of the inverse problem: z = Xα + ϵ. Top:
observed time series z. Bottom: solutions obtained by OLS,
OMP, and CDL; here ⋄ denotes the original parameter vector
and ◦ denotes the estimated solution. CDL uses 250 projected
samples from z, the sparse solution is truncated to show only
the first 13 entries in this case.

the design matrix X ∈ R500×13. We then add a 9dB noise
to the signal. From Fig. 1, we see that OLS generates many
entries that are not sparse. ℓ0-LS, implemented using OMP
[11], successfully detects the right support of the sparse signal,
but it fails to estimate the contribution of the stimuli, α. For
the proposed CDL method, a compressed measurement matrix
Φ ∈ R250×500 is randomly generated as Gaussian random
matrix, and a dictionary D ∈ R500×500 is obtained from the
design matrix X . CDL then generates a sparse estimation of α
with 500 entries. We observe that CDL does correctly identify
the sparse support as well as contributions of the stimuli.

TABLE I: List of variable notations.

YM×N BOLD signal of N voxels
DM×p The dictionary of p atoms
Ap×N Set of N coefficient vectors
QK×N Set of N projected measurements
ΦK×M The measurement matrix
ΨM×M The basis for the dictionary D
ΘM×p Set of p sparse coefficient vectors

B. CDL - Problem Formulation

Table I outlines the notations that are used in this paper.
Given a BOLD signal matrix Y ∈ RM×N (N is the total
number of voxels), contrary to the design matrix X in the
GLM approach, the dictionary learning approach tries to learn
a dictionary D ∈ RM×p and its corresponding coefficient
matrix A ∈ Rp×N as follows:

min
D,A

{1
2
∥Y −DA∥22 + λA∥A∥1} (3)



This can be efficiently solved by recursively updating the
sparse coefficients A and the dictionary D [12]. First, given the
BOLD signal Y , an intermediate sparse approximation with
respect to the dictionary D(t−1) from step t− 1 is computed
by solving the following LASSO problem:

min
A(t)

{1
2
∥Y −D(t−1)A(t)∥22 + λA∥A(t)∥1} (4)

The dictionary is subsequently updated to minimize the rep-
resentation error while A(t) is fixed:

D(t) = argmin
D(t)

{1
2
∥Y −D(t)A(t)∥22} (5)

Since the BOLD signal Y is of high volume, in this work,
we are interested in the case where only a linear projection
of Y onto a measurement matrix Φ is available. Under this
compressed measurement setting, A(t) is computed using com-
pressed samples as will be explained later. Then the dictionary
update step in Eq. (5) becomes the following under-determined
problem:

min
D(t)

{1
2
∥Q− ΦD(t)A(t)∥22}, s.t. Q = ΦY (6)

which does not have unique solution for D(t) for a CS
measurement matrix Φ ∈ RK×M which has less rows than
columns. In what follows, we will discuss how to add addi-
tional sparse structure constraint on the dictionary D to help
us solve Eq. (6).

C. Sparse Dictionary Model

The sparse dictionary model suggests that each atom of
the dictionary has itself a sparse representation over some
prespecified base dictionary Ψ [13]. The dictionary is therefore
expressed as:

D = ΨΘ (7)

where Ψ ∈ RM×M is the basis and Θ is the atom representa-
tion matrix, assumed to be sparse. Since D mimics the design
matrix, Ψ is prespecified and served as the basis of D which
obviously affects the success of the entire model, and thus
we prefer to initialize Ψ with some prior knowledge about
the data (i.e., information from the experimental paradigm).
In comparison to the learnt dictionary from Eq. (5). The
dictionary model in Eq. (7) provides adaptability via the sparse
matrix Θ, which can be viewed as an extension to the existing
dictionaries, adding a new layer of adaptivity.

By substituting the D = ΨΘ with a sparse Θ, Eq. (3) now
becomes:

min
D,Θ

{1
2
∥Y −ΨΘA∥22 + λA∥A∥1 + λΘ∥Θ∥1} (8)

D. The proposed CDL approach

Similar to the dictionary learning approach in sec. III-B,
there are two steps in the CDL algorithm. In the sparse coding
step, the dictionary D(t−1) is fixed and obtained from the

previous iteration. The sparse coefficient A(t) can be obtained
by minimizing the following problem:

min
A(t)

{1
2
∥Q− ΦD(t−1)A(t)∥22 + λA∥A(t)∥1} (9)

Optimizing over A(t) is straightforward LASSO problem.
While in the dictionary update step, the optimization problem
becomes:

min
Θ(t)

{1
2
∥Q− ΦΨΘ(t)A(t)∥22 + λΘ∥Θ(t)∥1 (10)

Here, optimizing over Θ(t) is not directly LASSO which
requires the following Lemma to reformulate into the standard
LASSO problem.

Lemma 1. Let Q ∈ RK×N and Φ ∈ RK×M be two matrices,
and u ∈ RM and v ∈ RN be two vectors. Also assume that
vT v = 1. Then the following holds:

∥Q− ΦuvT ∥22 = ∥Qv − Φu∥22 + f(Q, v). (11)

The detailed derivation can be found in [13]. Based on
Lemma 1, each column of Θ(t), denoted as θ(t)j , in Eq. (10)
can be solved by the following LASSO-like problem:

θ(t)j = argmin
θ(t)
j

{1
2
∥E(t)

θj
a(t)j

T
−ΦΨθ(t)j ∥22 +λΘ∥θ(t)j ∥1} (12)

where E(t)
θj

is the projected estimation error associated with
the dictionary atom θj and a(t)j is the j-th column of matrix
A(t) as follows:

E(t)
θj

:= Q−
p∑

i=1,i̸=j

Φθ(t−1)
i a(t)j (13)

Now Eq. (10) can be efficiently solved using Eq. (12) and
Eq. (13). Also Lemma 1 requires that the column of the
dictionary D(t) should be in unit norm, which is done by
re-scaling the learnt dictionary in each iteration.

IV. EXPERIMENTS

In this section, we demonstrate the result comparison on
activation detection using the GLM with a design matrix and
the CDL with a learnt dictionary. We first present the data
used as well as how the activation maps are generated using
SPM software then we give the experimental results with some
discussions.

A. Data
We use the dataset from Pittsburgh Brain Activity Interpre-

tation Competition 2007 (PBAIC 2007) [10]. The brain images
were collected from three subjects using a Siemens 3T Allegra
scanner. The BOLD signal was acquired by using EpiBOLD
sequence, with the imaging parameters TR and TE being set
to 1.75s and 25ms. Each subject’s data consists of three runs
lasting for approximately 20 minutes with 704 volumes in
each segment. Each volume contains 64×64×34 voxels with
a voxel size of 3.2 × 3.2 × 3.5 mm3. In this experiment,
we use the preprocessed data where slice time correction,



Fig. 2: Activation maps for the Instructions task. Top: results
generated using SPM with design matrix X ∈ R500×14,
Bottom: results generated using CDL method, with Gaussian
measurement matrix Φ ∈ R250×500 and a learnt dictionary
D ∈ R500×500. Slice number from left to right are 13, 14, 15,
and 16 in both rows.

motion correction and detrending have been performed on
the functional and structural data using NeuroImage software
(AFNI). A fixed period is extracted from the preprocessed
dataset leading to a total of 500 volumes in each run.

For the design matrix X , the first 13 columns of X are
constructed by considering the thirteen convolved stimuli/task
function that are part of the features set provided by PBAIC
20071, done by the SPM software package2. A temporal
smoothing is applied to the data in order to remove the low
frequency variations (i.e., confounds) due to artifacts such as
aliased biorhythms as well as other drift terms. The highpass
filter is obtained from DCT basis with a cut-off frequency set
as 1/128 Hz. We also add one column of all ones that models
the whole brain activity [14]. The design matrix X ∈ R500×14

is then used in SPM to generate the activation maps for
comparison purpose.

After generating the coefficients β from the GLM, for each
voxel, the contrast vector c is applied to estimate the BOLD
response to a single stimulus. For example, to evaluate the
instructions task in the PBAIC 2007 dataset, all the entries of
the contrast vector c is set to zero except for the sixth that is
set to one. Finally, by calculating the cTβ, an activation map
will be generated corresponding to the specific task.

B. Results
In order to generate the sparse coefficients using the CDL

approach, the measurement matrix is randomly generated
using the Gaussian i.i.d measurement matrix with the CS
measurement ratio set as 0.5 (i.e., K/M = 0.5 in Φ). The
basis Ψ for the dictionary is randomly generated using DCT
coefficients, with the first 13 columns from the design matrix
X used in SPM, and p = 500. We set λA = λΘ = 0.1, and
use the SPAMS [12] software package for solving the LASSO.
Fig. 2 shows the activation maps from both methods, while the
detailed comparisons are listed in Table II. This result confirms
that CDL enjoys a very similar detected activation maps as
compared with SPM while using much less data samples.

1http://www.lrdc.pitt.edu/ebc/2007/docs/CompetitionGuideBook2007v7.pdf
2http://www.fil.ion.ucl.ac.uk/spm/

Activated slice indices
(totally 34 slices)

Avg. slice-wise
matches (%)

Avg. voxel-wise
matches (%)

SPM 5-22 83.33% 50.14%CDL 3, 4, 8-22

TABLE II: Detected activations comparison of SPM and CDL.

V. CONCLUSIONS

In this paper, we presented CDL, a compressed dictionary
learning approach for detecting activations in fMRI data. The
double sparsity model was applied in solving the inverse
problem induced by the general linear model in the analysis,
where sparsity was imposed on both the learnt dictionary and
the sparse representation of the BOLD signal. Compressed
sensing measurements were used for learning the dictionary
instead of the entire BOLD signal and thus reducing the data
volume to be processed. Experimental results on real fMRI
data demonstrated that CDL could successfully detect the
activated voxels similar to the results generated by the SPM
software but with much less data samples used.
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