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Abstract—This paper presents an unobtrusive, energy-efficient
approach to human activity sensing through the intelligent
scheduling of built-in sensors on mobile phones and light-weight
compressed sensing. We refer to this framework as pattern-based
compressed phone sensing (P-CPS) where two challenging issues
are studied, the energy drainage issue due to continuous sensing
which may impede the normal functionality of the mobile phones
and the requirement of active user inputs for data collection
that may place a high burden on the user. The proposed P-
CPS framework consists of two stages – training stage and
sensing stage. In the training stage, a Pattern Matrix (PM) is
constructed and an adaptive sensing scheme is used to update
the PM automatically in order to keep records of a user’s activity
occurrences. In the sensing stage, P-CPS incorporates a Gaussian
mixture model-based activity modeling and the adaptive sensing
scheme for sensing scheduling. Compressed sensing (CS) is
applied during the activity signal acquisition process. P-CPS uses
a sparse binary measurement matrix which results in only simple
matrix additions at the mobile side for energy efficiency purpose.
Experimental results on driving activity sensing show that P-CPS
can have, on average, the sensing scheduling accuracy about 70%
but with 62.86% less energy consumption as compared to the
continuous sensing.

I. INTRODUCTION

With the widespread popularity of mobile phones and the
rich set of built-in sensors, mobile phones have revolution-
ized the way “sensing” can be performed. Collectively, these
sensors have made available a variety of applications across
different domains, including, for example, social networking,
health care, and location based services [1], among which
human centered mobile phone activity sensing has gained
more and more attention. The work from Gonzalez et al.
[2] published in Nature tried to study the basic laws that
govern human motion using mobile phones. Huynh et al. [3]
used topic models to realize the automatic discovery of such
patterns in a mobile phone user’s daily routine.

Depending on how much the user should be actively
involved during the sensing activity, mobile phone sensing
can be divided into participatory sensing, where the user
actively participates in the data collection activity (i.e., the
user manually determines how, when, what, and where to
sample), or, alternatively, opportunistic sensing, where the data
collection is fully automated without any user involvement [1].
Although opportunistic sensing relieves the burden placed on
the user, it would require the phone sensors to continuously
function which drastically reduces battery lifetime into a few
hours, jeopardizing the usability of the phone. Participatory
sensing leverages human intelligence into the sensing. The

drawback is that the quality of data is dependent on partici-
pant’s enthusiasm to reliably collect the sensing data and the
compatibility of a person’s mobility patterns to the intended
goals of the application [1].

In this paper, we overcome these problems by proposing a
pattern-based compressed phone sensing (P-CPS) framework
for human-centered activity sensing. Since human-centered
activity sensing targets at individual’s activity, the sensing
schedule can be made to correlate with the human activity
pattern. In other words, mobile phone sensing should take
advantage of the context. P-CPS first utilizes the recorded
Pattern Matrix (PM) to build the activity pattern model. It
then uses this model to update the future PM for sensing
scheduling, which largely alleviates the resource consumption
from continuous sensing. Compressed sensing (CS) is then
applied during the time of activity sensing. CS has been widely
used in the area of signal sensing and compression [4], [5]
since it reduces the number of digital samples required to
reconstruct from highly incomplete information, which is ideal
for the mobile phones. For example, CS has been applied for
human activity signals in [6], [7]. [8] utilizes a measurement
scheduling matrix for soil moisture sensing as well as sensing
scheduling, which share some common idea as our pattern
matrix. However, CS requires a matrix-vector multiplication to
obtain the observed data. Traditional CS uses DCT, Wavelet,
or scrambled Fourier as a non-adaptive dense measurement
matrix, which would put much computational burden on the
mobile phone and introduce sensing overhead. We propose
a sparse binary measurement matrix which results in simple
matrix operation (i.e., only additions) at the mobile side for
practical application.

To the best of our knowledge, this paper is the first to
incorporate human activity patterns into mobile phone sensing
using compressed sensing technique.

The rest of this paper is organized as follows. In Section
II, we give the definition of the pattern-based activity and
modeling as well as how to build the pattern matrix for
sensing scheduling. In Section III, we introduce compressed
phone sensing with details on how to apply it in the P-CPS
framework. Sensing scheduling accuracy, smart phone energy
consumption, and activity signal recovery results using P-CPS
are shown in Section IV. Section V concludes the paper.



II. PATTERN-BASED ACTIVITIES - MODELING AND
REALIZATION

In this section, we first define “activity” and “pattern-based
activity”. We then present the mechanism to model the activity
pattern used in P-CPS. We explain how to use the pattern
matrix to incorporate the activity patterns and how to construct
and maintain such a matrix for P-CPS.

A. Definition

We define the human activity (e.g., walking, driving, jog-
ging) as a sequence of meaningful actions intended to achieve
certain goals. We assume an activity is different from the ac-
tions or operations, where the latter usually last for very short
duration while an activity generally consists of a sequence of
actions. Activity pattern is related to an individual’s activity
but different from the activity itself. We define that an activity
is pattern-based if: (1) it is a frequently occurring event, (2) it
tends to have pattern over a long period of time, and (3) it is
different from user to user. For example, for most people in
the US, driving is a daily activity. However, the time period
one drives and how long the driving activity takes place are
different from person to person. This is one’s driving pattern.

B. Modeling

In order for the smart phone to be able to predict the activity
and thus perform sensing tasks, two pieces of information
are essential: (1) The granularity of an activity: We consider
an activity to be meaningful if its duration is longer than
certain amount of time. In P-CPS we define the granularity
of an activity as 5 minutes. Accordingly, we divide a day into
5-minute time slots, yielding totally 24×60

5 = 288 slots. (2) The
temporal information of the previous activity: The temporal
information of the past activity is very useful for building
the activity model and for prediction purpose. The temporal
information can be collected in the form of time when the
activity started and the duration of the activity.

Here, we define the Pattern Matrix (PM) of an activity
which incorporates both the above information as follows.

Definition 1 (Pattern Matrix). A Pattern Matrix is a binary
matrix with each column j representing a day and each row
i, (1 ≤ i ≤ 288), representing a time slot during that day,
such that,

PM(i, j) =

{
0 the activity does not occur

1 the activity occurs.

Therefore, each column of the PM records the temporal
information of an activity happened over that day with the pre-
defined activity granularity using binary indicators. By adding
one column each day to the PM with predicted values based
on the activity pattern model, we can predict future activities
in order to schedule the mobile phone sensors for intelligent
sensing.

In P-CPS, we use the Gaussian Mixture Model (GMM) to
model the activity pattern. Generally speaking, a user tends to
perform an activity at around one particular time of the day
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Fig. 1: An example of modeling the driving activity pattern
using the GMM.

and the frequency of occurrence gradually decreases as time
of the activity deviates from that favorite time. Thus the total
number of activity occurrence at each time slot during a day
over a long period of time would fit into a GMM. Figure 1
shows an example of modeling the driving pattern using the
GMM.

C. Pattern Matrix Construction and Maintenance

1) Training stage – Learning based adaptation: Initially,
the PM is a 288× 1 column vector and will be increased one
column per day during the training stage. The length of the
training stage can be defined arbitrarily, for example, 2 months
in our experiment.

P-CPS uses a learning technique based on the theory of
learning automata to control the sensing rate of the sensors.
In particular, we use the linear reward-inaction [9] algorithm.
Learning automata based techniques are defined in terms of
actions, probability of taking these actions, and their resulting
success or failure. In P-CPS, the only action taken is sensing
from a sensor. The decision whether to sense or not at a time
slot i is based on the probability pi, which we refer to as
probability of sensing. When a sensor conducts sensing that
results in capturing an activity of interests, it is considered
a success, otherwise, a failure. The probability of sensing is
dynamically adjusted according to their previous success or
failure rate, as formulated below:

p{i+1,··· ,i+n} =

{
pi + α(1− pi) action is a success
pi − αpi, action is a failure

where the action is taken at time slot i with sensing probability
pi, 0 < α < 1, and n is the number of time slots following
the time slot i whose probability of sensing will be affected
by the success or failure event at time slot i. We set n = 10.

At the beginning of each day, P-CPS will first random-
ly initialize one column of PM with probability values pi
(0.1 ≤ pi ≤ 0.9). We limit the lower bound to 0.1 to avoid
very small sampling opportunity, which will potentially lead to
miss an activity. We also limit the upper bound to avoid a too
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Fig. 2: An pattern matrix and sensing scheduling.

aggressive sampling, which reduces the battery life. Based on
the common sense that human beings are more active during
day time, P-CPS intentionally places higher pi values in the
daytime slots (i.e., non-uniform randomization). Then during
that day, P-CPS will perform activity sensing at a certain
time slot, i, when pi exceeds a threshold τ . The success or
failure of this sensing (i.e., if during that time slot, it actually
captures any activity of interest) will, on one hand, be used to
update the probability of sensing of the subsequent time slots
as formulated above; and on the other hand, update the current
probability of sensing value to 1 (success) or 0 (failure). By
adopting these mechanisms, the sampling rate adapts to the
context of the user’s activity pattern.

2) Sensing stage – Activity pattern model based scheduling:
After the training stage, a GMM will be built based on
the PM. We use two Gaussian mixtures and the Expectation
Maximization (EM) algorithm to estimate the parameters used
in the GMM model. Then at the beginning of each day, instead
of randomly generating the probability value pi, the probability
pi will be initialized based on the prediction from the pattern
model. Then the adaptive sampling mechanism will be used
to perform the sensing tasks as usual. Figure 2 shows the PM
and the prediction of the sensing time.

III. COMPRESSED PHONE SENSING

In this section, we describe how P-CPS uses the Compressed
Sensing (CS) technique during activity sensing to further
reduce the amount of sampling.

A. Random Sensing

When mobile phone sensors are active for activity sensing
during any 5-minute time slot, instead of keeping the sensors
on for the whole 5 minutes, P-CPS randomly starts the sensors
and keeps them active for approximately one minute. This can
be thought of as applying another level of CS on the activity
signal acquisition. The random sampled measurements can
then be used to reconstruct the entire 5-minute signal with high
precision as shown in our experiments. Depending on the level
of accuracy and the number of data samples an application
requires, different random sensing time can be chosen.

B. Generating Measurements

CS is a state-of-the-art data compression and reconstruction
theory that exploits the fact that many natural signals are
sparse or compressible in the sense that they have concise
representations when expressed in the appropriate basis. Let
Ψ be an n×n basis matrix and s be a sparse expression of the
original signal x ∈ Rn. Then x can be expressed as x = Ψs. In
the CS theory, the original signal x is projected to an m× n
measurement matrix Φ, and the linear projections y ∈ Rm

are then sent to a server. This measurement y is expressed as
y = Φx = ΦΨs, where Φ should be incoherent with Ψ.

On the server side, Φ and Ψ are known, since we assume
that x can be sparsely represented in the basis Ψ, s can
be estimated by solve the `1-norm minimization using linear
programming:

arg min
s
||s||1 s.t. y = ΦΨs (1)

Typically, CS uses random Gaussian, scrambled Fourier
matrices as the measurement matrix Φ, however, a sparse
binary measurement matrix has gained its reputation by being
able to reduce the matrix multiplication to only addition
thus reducing the total number of operations. The sparse
measurement matrix used in P-CPS is based on the adjacency
matrix of the high-quality expander graph, with guaranteed
CS recovery [10]. The design of the sparse binary matrix is
detailed in [11]. We also choose a discrete cosine transform
(DCT) as the activity signal basis matrix Ψ at the server side
to ensure that the signal holds certain level of sparsity.

IV. EXPERIMENTAL RESULTS

We implement an application on the Google Nexus S smart
phone that uses the accelerometer sensor to perform the
driving activity sensing and collect data from 6 subjects across
various time frames (e.g., school time, weekend, summer time,
etc.). All subjects are college students, each of who collects
data for more than 70 days, with the longest one about 8
months.

A. Performance Metrics

We use three metrics to evaluate the effectiveness of the
proposed P-CPS framework: accuracy, energy, and recovery
error. The accuracy is measured in terms of the percentage of
captured driving activity within each 5-minute time slot each
day. The energy consumption the amount of energy consumed
by P-CPS. For evaluation purpose, we compare the energy
consumption of three sensing schemes, continuous sensing of
the accelerometer sensor, pattern-based scheduling (i.e., same
as P-CPS sensing stage) but using continuous sensing (Pattern
non-CS) during the 5-minute time slot, and P-CPS. We make
certain that the mobile phone is under the same baseline
energy consumption (i.e., under the same settings, sensors and
applications). The recovery error is measured based on the
Root Mean Square Error (RMSE) of the accelerometer signal.
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Fig. 3: The results on P-CPS initialization and scheduling.

Stage Subj. 1 Subj. 2 Subj. 3 Subj. 4 Subj. 5 Subj. 6
Training 66.67% 56.10% 42.85% 63.89% 53.33% 53.57%
Sensing 81.06% 72.50% 71.11% 78.26% 65.22% 75%

TABLE I: Averaged P-CPS training and sensing stage accuracy
on 6 subjects using GMM with two mixture components, with
50 days during training stage, 20 days during sensing stage,
and α = 0.5.

B. Accuracy
For all the subjects, we use 50 days for the P-CPS training

stage and 20 days for the sensing stage. We also randomly
initialize the pi (1 ≤ i ≤ 288) in the range [0.1, 0.5] for
the night time slots and [0.5, 0.9] for the day time slots.
The threshold τ is set to be 0.35 and 0.65, respectively.
Table I shows the average accuracy during our experiment. We
explore the performance of learning using different α, and set
α = 0.5 to balance the accuracy and sensing energy in our
experiment. Figure 3 shows the results on P-CPS initialization
and scheduling.

20 40 60 80 100 120 140
 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Battery level every 10 minutes over one day

B
at

te
ry

 le
ve

l

 

 

Continuous sensing
Pattern non−CS
P−CPS (Training)
P−CPS (Sensing)

Fig. 4: Energy consumption of different sensing schemes.

C. Energy Consumption Comparison
Figure 4 demonstrates the mobile energy consumption using

different sensing schemes. We observe that P-CPS can save

62.86% of energy than continuous sensing and 39.62% of
energy than pattern-based normal sensing.

D. Recovery Accuracy
In the experiment, we collect the accelerometer signal in

x-, y-, z- axis separately at random one-minute duration
when the mobile sensor is active in a particular 5-minute
time slot. The collected signal if of dimension 3000. We use
the famous `1-magic matlab package for CS recovery. The
CS measurement matrix Φ is a 600 × 3000 sparse binary
matrix (i.e., the measurement ratio m/n is 0.2, and only
600 measurements will be sent to a sever for recovery). The
recovered accelerometer signal has an average accuracy of
approximately 0.0189 ± 0.014 NRMSE for the 20 sensing
days of driving activity, which is very close to the original
accelerometer signal.

V. CONCLUSIONS

In this paper, we presented the P-CPS framework, a pattern-
based compressed phone sensing mechanism, where an activ-
ity pattern matrix was constructed and adaptively modified to
control the scheduling of active sensing. During the period
of active sensing, CS was applied to further reduce samples
acquired. Experimental results showed that P-CPS had a
sensing scheduling accuracy about 70% while the smart phone
energy consumption using P-CPS is 62.86% less than that of
using continuous sensing.
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