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Data aggregation in WSNs
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Data aquisiton in WSNs

Traditionally: sample then compress/aggregation

» i.e., average, mean of the data or transform the data in
another domain (frequency, wavelet etc)

» to save energy and storage by sampling all the data first
and then discarding most of them?
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Data aquisiton in WSNs

Traditionally: sample then compress/aggregation

» i.e., average, mean of the data or transform the data in
another domain (frequency, wavelet etc)

» to save energy and storage by sampling all the data first
and then discarding most of them?

» How to aquire informative data efficiently?
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Data aquisiton in WSNs
Compressed Sensing (CS)

» Direclty through y = ®x, (y € R, x € R" and m < n) we
can recovery x with no/little informance loss.
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Data aquisiton in WSNs
Compressed Sensing (CS)

» Direclty through y = ®x, (y € R™. x € R” and m < n) we
can recovery x with no/little informance loss.

» Underdetermined system of linear equations which leads to
infinite solutions

» What if we put conditions on x and ¢??
X is sparse/compressible, ¢ satisfies certain property, (RIP,
Null space property)
unique solution!!

» [Pros]: reduces the sample length

» [Cons]: introduces the dense measurement problem if ¢ is

dense. (i.e., a linear project would involve all the sensor
readings
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Data aquisiton in WSNs

Compressed Sensing (CS)
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Figure : Compressed sensing

'Image courtsey of Professor Richard Baraniuk at Rice University
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Prior works

CS based data aggregation and routing in WSNs
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Our approach

» A sparse binary matrix based on unbalanced expander
graph for two purposes
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Our approach

» A sparse binary matrix based on unbalanced expander
graph for two purposes
» as the CS measurement matrix

» works as good as "dense” CS matrices (Random Gaussian,
Scrambled Fourier matrices)
» reduces computational complexity and communication costs

» as the sensor selection matrix
» needs to be uniform selection or be fair
» A Distributed Compressive Sparse Sampling (DCSS)
algorithm
» randomly choose m designated sensors
» query only a necessary number of measurements (i.e.,
O(klog(n)) is enough for guaranteed CS data recovery)
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Our approach: measurement matrix design

» Instead of using traditional random CS measurement
matrices. We use sparse graph codes (i.e., expander
graphs) as CS measurement matrix
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Our approach: measurement matrix design

» Instead of using traditional random CS measurement
matrices. We use sparse graph codes (i.e., expander
graphs) as CS measurement matrix

» [Berinde2008, Theorem 1,2,3] studied the relationship
between the expander graph and CS measurement
matrices, which serves as the theoretic foundation of our
approach.
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Our approach: measurement matrix design
Expander graph
» Let X C U, N(X) be set of neighbors of X in V
» G(U, V,E)is called (k, €)-expander if
VX cU, | X|<k=|NX)| > -edX|
» Each set of nodes on the left expands to N(X) number of
nodes on right
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Our approach: measurement matrix design
Sparse binary matrix from expander graph

A sparse binary matrix of m rows and n columns is generated
in the following way:
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Our approach: measurement matrix design
Sparse binary matrix from expander graph

A sparse binary matrix of m rows and n columns is generated
in the following way:

» Step 1: For each column, randomly generate 7 integers
whose values are between 1 and m and place 1’s in those
rows indexed by the 7 numbers;

» Step 2: If the 7 numbers in one column are not distinct,
repeat Step 1 until they are (this is not really an issue when
T < m).

7 is the degree of the expander graph, 7 = 8 in our experiment
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Our approach: measurement matrix design

Sparse binary matrix for sensor selection

For each row of the sparse binary matrix ¢, e R” (1 <i < m)

(1]ojofof1]---[Of[1][O]

can be seen as an n-dimensional row vector (binary indicator
function) for sensor subset selection (i.e., select sensor j to be
active for sensing when ®; = 1, and inactive otherwise.)
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Our approach: measurement matrix design
Fairness of sensor selection

» Each sensor will be selected equally 7 times for sensing
based on the design of the matrix.
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Our approach: measurement matrix design

Fairness of sensor selection

» Each sensor will be selected equally 7 times for sensing
based on the design of the matrix.
» m designated sensors and routing sensors will cause
unbalanced energy consumption, however
» they are chosen each time when you want to sense the
whole environment (i.e., selected very infrequently)
» since m < n, each time only a random small amount of
sensors will be selected.
» In the long run, the energy consumption can still be
balanced
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Our approach: DCSS algorithm

Network model

» Consider a wireless network of n sensors with diameter d
hops, each measures a real data value x; (i =1,2,--- ,n),
which is sparse or compressible under some
transformation domains

» y = &x (d is sparse binary matrix, i.e., ¢; € {0,1})

» Randomly choose m designated sensors from n sensors
(m < n)
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Our approach: DCSS algorithm

» Input:
» & e R™M,
» sensor neighborhood information,
» environmental reading vector x € R".
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Our approach: DCSS algorithm

» Input:
» & ¢ Rmxn,
» sensor neighborhood information,
» environmental reading vector x € R".

» Qutput: recovered vector x* € R".
» Steps:
» The Fusion Center(FC) generates the sparse binary matrix
® and broadcasts the matrix and neighborhood information,
» For each sensor s;, (1 <j << n), sends its reading x; to the
designated sensor D; through shortest path if ®; # 0,
» For the m designated sensors Dy, - - - , Dy, each computes
and stores the sum of the reading it receives,
» The m designated sensors send their results to the FC and
FC performs CS recovery for x*.
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Our approach: DCSS algorithm

P11 P12 0 P X1

$21 P2 -0 on X2

Om Om2 - Omn Xn

»
Y2

Ym
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Our approach: DCSS algorithm

P11 P12 0 P X1 iz
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For each sensor:

> ¢;i - X; means sensor id s; sends its readings x; to the
designated sensor D;, if ¢;; # 0
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Our approach: DCSS algorithm

P11 P12
P21 P22
¢m1 d)m2

For each sensor:

®1n Xq 1
P2n X2 | _| Y
Dmn Xn Ym

> ¢;i - X; means sensor id s; sends its readings x; to the
designated sensor D;, if ¢;; # 0

For m designated sensors:

» Designated sensor D; computes and stores the summation
of the sensor reading it receives, forall 1 <i<m

» Report yq,-- -, ¥m as observations y € R™
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Our approach: DCSS algorithm

An example

o

. Fusion Center @ Designated Sensor 2 ===—f=- Data to FC
@ Desij Sensor 1 @ Dy Sensor3 ssees - Routing Path

[17/29] Shuangjiang Li, Hairong Qi, AICIP Lab “Distributed Data Aggregation for Sparse Recovery in Wireless Sensor Networks.” DCOSS 2013



Our approach: DCSS algorithm

Communication cost

» Based on avergate bit-hop cost per reading

» Assume w to be the average row weight of the sparse
binary measurement matrix, 7w is the cost of gathering the
sensor readings for each projection
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Our approach: DCSS algorithm

Communication cost

v

Based on avergate bit-hop cost per reading

Assume w to be the average row weight of the sparse
binary measurement matrix, 7w is the cost of gathering the
sensor readings for each projection

Assume d as the cost to send the projection to FC

For generation of O(klog(n)) projection for data recovery,
the total communication cost is: O(k(rw + d)log(n))

v

v

v
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Our approach: DCSS algorithm

Communication cost

TABLE I: Communication cost of different CS algorithms.

Algorithm Cost
DS O(knlogn)
SRP [9] O(kdlog® n)

CDS(RW) 4] | O(k(t + d)Togn)
Sparse Binary | O(k{tw + d) log n)

» DS: dense sampling

» SRP: sparse random projection in [Wang20071PSN]

» CDS (RW): compressive distributed sensing using random
walk in [Sartipi2011DCC]
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Experiments
Setup

» Data aggregation schemes comparsion

» Dense sampling matrices (Random Gaussian, Scrambled
Fourier measusrement matrices)

» Sparse random projection matrices in [Wang2007IPSN]
with various sparse level s

» Evaluation metrics

I %3
o 2
(13

where X is the value of the original signal, while x* is the
reconstructed signal.

» Using /1-magic package for CS recovery
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Experiments
Exact sparse signal recovery
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Fig. 5: Recovery result of an n = 1024, sparsity £k = 30
sparse signal X, with an average of 100 experiments using LP
recovery method.
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Experiments

Noisy sparse signals recovery
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Fig. 6: Noisy recovery result of an n = 1024, sparsity k =
30 sparse signal x, with different SNRs (5, 15,25, and 35)
and an average of 100 experiments using LP recovery method
evaluated by different measurements.
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Experiments

Compressible signals recovery
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Fig. 7 Recovery result of a sampled compressible signal z =
4n 10, with an average of 100 experiments using LP recovery
melhod evaluated by different measurements.
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Experiments

Real signal: Intel lab data (light intensity at node 19)

Onginal signal
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Fig. 8: Recovery result of real Intel lab signal using 100
wavelet coefficients and 400 CS measurements with different
measurement matrices.
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Experiments
Real signal: Intel lab data (light intensity at node 19)

TABLE II: Recovered SNR of different measurement matrices.

[ Methods | Wavelet approx. | Sparse binary | Dense sampling | SRP (s = 64) |
[ SNR | 214735 | 255702 | 22.8528 | 10.0653 |
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Real signal: intel lab data (light intensity at node 19)
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Fig. 9: Recovery result of real Intel lab signal, with an average
of 100 experiments using LP recovery method evaluated by
different measurements.
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Conclusions

» A sparse binary measurement matrix was designed based
on expaned graph.

» Can be used for CS measurment matrix and sensor subset
selection.

» The recovery result is as good as traditional random dense
CS measurement matrix and worked the best on
compressible data.

» Resolved the dense measurement problem.
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» A sparse binary measurement matrix was designed based
on expaned graph.

» Can be used for CS measurment matrix and sensor subset
selection.

» The recovery result is as good as traditional random dense
CS measurement matrix and worked the best on
compressible data.

» Resolved the dense measurement problem.

» A structure free data aggregation algorithm (DCSS) was
proposed. Results from both synthetic and real data

experiments demonstrated the usefulness of the
algorithms.
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Thank you!!
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