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Data aggregation in WSNs
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Data aquisiton in WSNs

Traditionally: sample then compress/aggregation
I i.e., average, mean of the data or transform the data in

another domain (frequency, wavelet etc)
I to save energy and storage by sampling all the data first

and then discarding most of them?

I How to aquire informative data efficiently?
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Data aquisiton in WSNs
Compressed Sensing (CS)

I Direclty through y = Φx , (y ∈ Rm, x ∈ Rn and m� n) we
can recovery x with no/little informance loss.

I Underdetermined system of linear equations which leads to
infinite solutions

I What if we put conditions on x and Φ??
x is sparse/compressible, Φ satisfies certain property, (RIP,
Null space property)
unique solution!!

I [Pros]: reduces the sample length
I [Cons]: introduces the dense measurement problem if Φ is

dense. (i.e., a linear project would involve all the sensor
readings
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Data aquisiton in WSNs
Compressed Sensing (CS)

Figure : Compressed sensing 1

1Image courtsey of Professor Richard Baraniuk at Rice University
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Prior works

CS based data aggregation and routing in WSNs

I [Bajwa2007, Luo2009] single-hop comm. to sink, dense
CS matrix

I [Quer2009, Wang2011] routing based on measurement
matrix, random routing, both require grid networks and not
consider fairness of sensor selection

I [Lee2009] spatially-locailzed sparse projections as
measurment matrix, not easy to generate
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Our approach

I A sparse binary matrix based on unbalanced expander
graph for two purposes

I as the CS measurement matrix
I works as good as ”dense” CS matrices (Random Gaussian,

Scrambled Fourier matrices)
I reduces computational complexity and communication costs

I as the sensor selection matrix
I needs to be uniform selection or be fair

I A Distributed Compressive Sparse Sampling (DCSS)
algorithm

I randomly choose m designated sensors
I query only a necessary number of measurements (i.e.,
O(k log(n)) is enough for guaranteed CS data recovery)
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Our approach: measurement matrix design

I Instead of using traditional random CS measurement
matrices. We use sparse graph codes (i.e., expander
graphs) as CS measurement matrix

I [Berinde2008, Theorem 1,2,3] studied the relationship
between the expander graph and CS measurement
matrices, which serves as the theoretic foundation of our
approach.
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Our approach: measurement matrix design
Expander graph

I Let X ⊂ U, N(X ) be set of neighbors of X in V
I G(U,V ,E) is called (k , ε)-expander if

∀X ⊂ U, |X | ≤ k ⇒ |N(X )| ≥ (1− ε)d |X |
I Each set of nodes on the left expands to N(X ) number of

nodes on right
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Our approach: measurement matrix design
Sparse binary matrix from expander graph

A sparse binary matrix of m rows and n columns is generated
in the following way:

I Step 1: For each column, randomly generate τ integers
whose values are between 1 and m and place 1’s in those
rows indexed by the τ numbers;

I Step 2: If the τ numbers in one column are not distinct,
repeat Step 1 until they are (this is not really an issue when
τ � m).

τ is the degree of the expander graph, τ = 8 in our experiment
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Our approach: measurement matrix design
Sparse binary matrix for sensor selection

For each row of the sparse binary matrix Φi ∈ Rn (1 ≤ i ≤ m)

1 0 0 0 1 · · · 0 1 0

can be seen as an n-dimensional row vector (binary indicator
function) for sensor subset selection (i.e., select sensor j to be
active for sensing when Φij = 1, and inactive otherwise.)
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Our approach: measurement matrix design
Fairness of sensor selection

I Each sensor will be selected equally τ times for sensing
based on the design of the matrix.

I m designated sensors and routing sensors will cause
unbalanced energy consumption, however

I they are chosen each time when you want to sense the
whole environment (i.e., selected very infrequently)

I since m� n, each time only a random small amount of
sensors will be selected.

I In the long run, the energy consumption can still be
balanced
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Our approach: DCSS algorithm
Network model

I Consider a wireless network of n sensors with diameter d
hops, each measures a real data value xi (i = 1,2, · · · ,n),
which is sparse or compressible under some
transformation domains

I y = Φx (Φ is sparse binary matrix, i.e., φij ∈ {0,1})
I Randomly choose m designated sensors from n sensors

(m� n)
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Our approach: DCSS algorithm

I Input:
I Φ ∈ Rm×n,
I sensor neighborhood information,
I environmental reading vector x ∈ Rn.

I Output: recovered vector x∗ ∈ Rn.
I Steps:

I The Fusion Center(FC) generates the sparse binary matrix
Φ and broadcasts the matrix and neighborhood information,

I For each sensor sj , (1 ≤ j <≤ n), sends its reading xj to the
designated sensor Di through shortest path if Φij 6= 0,

I For the m designated sensors D1, · · · ,Dm, each computes
and stores the sum of the reading it receives,

I The m designated sensors send their results to the FC and
FC performs CS recovery for x∗.
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Our approach: DCSS algorithm


φ11 φ12 · · · φ1n
φ21 φ22 · · · φ2n
· · · · · · · · · · · ·
φm1 φm2 · · · φmn




x1
x2
· · ·
xn

 =


y1
y2
· · ·
ym



For each sensor:
I φij · xj means sensor id sj sends its readings xj to the

designated sensor Di , if φij 6= 0
For m designated sensors:

I Designated sensor Di computes and stores the summation
of the sensor reading it receives, for all 1 ≤ i ≤ m

I Report y1, · · · , ym as observations y ∈ Rm
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Our approach: DCSS algorithm
An example
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Our approach: DCSS algorithm
Communication cost

I Based on avergate bit-hop cost per reading
I Assume ω to be the average row weight of the sparse

binary measurement matrix, τω is the cost of gathering the
sensor readings for each projection

I Assume d as the cost to send the projection to FC
I For generation of O(k log(n)) projection for data recovery,

the total communication cost is: O(k(τω + d) log(n))
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Our approach: DCSS algorithm
Communication cost

I DS: dense sampling
I SRP: sparse random projection in [Wang2007IPSN]
I CDS (RW): compressive distributed sensing using random

walk in [Sartipi2011DCC]
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Experiments
Setup

I Data aggregation schemes comparsion
I Dense sampling matrices (Random Gaussian, Scrambled

Fourier measusrement matrices)
I Sparse random projection matrices in [Wang2007IPSN]

with various sparse level s

I Evaluation metrics

ε =
‖x− x∗‖22
‖x∗‖22

where x is the value of the original signal, while x∗ is the
reconstructed signal.

I Using `1-magic package for CS recovery
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Experiments
Exact sparse signal recovery
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Experiments
Noisy sparse signals recovery
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Experiments
Compressible signals recovery
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Experiments
Real signal: Intel lab data (light intensity at node 19)
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Real signal: intel lab data (light intensity at node 19)
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Conclusions

I A sparse binary measurement matrix was designed based
on expaned graph.

I Can be used for CS measurment matrix and sensor subset
selection.

I The recovery result is as good as traditional random dense
CS measurement matrix and worked the best on
compressible data.

I Resolved the dense measurement problem.

I A structure free data aggregation algorithm (DCSS) was
proposed. Results from both synthetic and real data
experiments demonstrated the usefulness of the
algorithms.
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Thank you!!
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