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Abstract—We consider the approximate sparse recovery prob-
lem in multi-hop Wireless Sensor Networks (WSNs) using Com-
pressed Sensing/Compressive Sampling (CS). The goal is to
recover the n-dimensional data values by querying only m � n
sensors based on some linear projection of sensor readings. To
solve this problem, a distributed compressive sparse sampling
(DCSS) algorithm is proposed based on sparse binary CS
measurement matrix. Each sensor first samples the environment
independently, then the fusion center (FC), acting as a pseudo-
sensor, samples the sensor network to select a subset of sensors
(m out of n) that respond to the FC through shortest path for
data recovery purpose. The sparse binary matrix is designed
using the unbalanced expander graph which achieves the state-
of-the-art performance for CS schemes. This binary matrix can
be interpreted as a sensor selection matrix whose fairness is ana-
lyzed. Extensive experiments on both synthetic and real data sets
show that by querying only the minimum amount of m sensors
using the DCSS algorithm, the CS recovery accuracy outperforms
existing sparse random matrices and can be as good as those using
random dense measurement matrices but using much less number
of sensors. We also show that the sparse binary measurement
matrix works well on compressible data which has the closest
recovery result to the known best k-term approximation. The
recovery is robust against noisy measurements and does not
require regular WSN deployments (e.g., grids). The sparsity and
binary properties of the measurement matrix contribute, to a
great extent, the reduction of the in-network communication cost
as well as the computational burden.

Keywords—Data Aggregation; Distributed Compressed Sensing;
Sparse Binary Matrix; Sparse Recovery; Expander Graph;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of a number
of nodes which measure the environmental changes. In many
applications, aggregate functions of the sensor data are more
important than individual node data. When the scale of the
network is large, the value collaboratively collected from the
whole network is more important than the value collected by
one single node, as stated in [1]. One would expect more
data communications as well as heavy computation to achieve
this goal, while in a typically resource-limited wireless sensor
network, it is imperative that we develop effective data aggre-
gation techniques, that accommodate both the communication
and computation constraints in the network.

Traditional approaches for data acquisition first collect
the entire signal and then process it for compression and
transmission, or storage. In comparison, the Compressed Sens-
ing/Compressive Sampling (CS)-based approaches obtain di-
rectly a nonadaptive linear measurement of the entire signal.

A k-sparse signal x ∈ Rn (i.e., x contains at most k non-zero
elements) can then be accurately recovered from the linear
measurement vector y = Φx ∈ Rm [2], [3] with m � n,
where Φ is often referred to as the measurement matrix. Cur-
rent CS-based approaches have several problems that prevent
them from practical deployment in WSNs. First, in CS, Φ
is usually a random dense matrix (e.g., Gaussian, Scrambled
Fourier matrices, etc.) that induces the dense measurement
problem (i.e., each measurement in CS is a linear combination
of many, if not all, samples of the signal to be reconstructed).
This would require a lot of inter-communications between
sensors [4]. Second, most of the data routing algorithms rely
on the measurement matrix Φ where each row of Φ is treated
as a routing path. In theory, CS requires the measurement
matrix Φ to be incoherent with the sparsifying basis (e.g.,
DCT, wavelet), building the measurement matrix based on the
routing path lacks theoretic foundation for CS reconstruction
and causing inefficiency. Finally, these CS-based data routing
for aggregation usually requires regular WSN deployments
(e.g., grids), which makes them less practical.

In this paper, we study the CS-based sparse recovery
problem in multi-hop WSNs on arbitrary sensor deployment,
where each individual sensor first samples the environment
to obtain sensor readings and then the Fusion Center (FC),
acting as a pseudo-sensor, samples the sensor network based on
compressive sampling (e.g., how many sensor measurements
are needed), to obtain a subset of sensors (m out of n) for
sparse recovery. Thus the traditional problem that sensing will
cause data deluge is well alleviated.

In summary, the main contributions of this paper are as
follows:

Firstly, a Distributed Compressive Sparse Sampling
(DCSS) algorithm is developed that efficiently selects and
aggregates the sensor reading. The FC chooses m designated
sensors within the network based on the CS measurement
matrix, which provides a necessary number of m measure-
ments for accurate data recovery. The distributed algorithm
enjoys the sparsity of the measurement matrix that reduces
the communication cost and relieves the computational burden
of the network while also solving the dense measurement
problem.

Secondly, a sparse binary matrix based on the unbalanced
expander graph is proposed. Although such measurement
matrix has been developed for network streaming and only
recently in CS [5], this paper represents the first attempt in
designing the sparse binary matrix with a fixed number of 1’s



in each column of the measurement matrix such that it can
be applied in WSNs for data recovery purpose. Theoretical
analysis shows the guaranteed sparse recovery result.

Lastly, based on the analysis of the average bit-hop cost
for DCSS and comparison with several CS-based data routing
and aggregation algorithms, we demonstrate that DCSS has a
low intercommunication cost which paves the way for practical
CS-based sparse recovery in WSNs.

The rest of this paper is organized as follows. In Section II,
we discuss some related works on CS-based data aggregation.
In Section III, we briefly review the background of CS,
the sparse recovery problem, and the measurement matrix
properties. Section IV formally describes the definition of
expander graphs and the connection between the CS and the
expander graph. Then we show how to design the proposed
sparse binary matrix. Furthermore, we explain that the sparse
binary matrix can be used as the sensor subset selection
matrix with proved fairness. Section V introduces the DCSS
algorithm. We conduct experiments in Section VI using both
synthetic and real datasets tested on both exact k-sparse signal
and compressible signals. Section VII concludes this paper.

II. RELATED WORK

One of the first papers studied CS for WSNs is [6], where
all sensors transmit their readings directly to the FC through
a single hop communication. However, this approach was not
feasible for WSN platforms due to the limited resources. In [7],
plain CS aggregation was applied on the large-scale WSN, but
[8] demonstrated the disadvantage of plain CS aggregation in
terms of throughput. The dense sampling problem had been
tackled by many active researchers later on but only a few
proposals applied CS to multi-hop networking. Interestingly,
Wang et al. [9] showed that the remarkable results of CS could
also be obtained using sparse random projection (SPR). The
measurement matrix for SRP is defined as:

Φij =
√
s


+1 if p = 1

2s

−1 if p = 1
2s

0 if p = 1− 1
s ,

(1)

where s is a parameter that determines the sparseness of the
projection and p is the probabilty.

Quer et al. in [10] investigated the routing cost for CS
aggregation in multi-hop WSNs where the measurement ma-
trix was defined according to the routing path. They also
demonstrated the benefits of CS in realistic multi-hop WSNs.
However, this method was only applicable to grid networks.
Random routing based CS measurement matrix was studied in
[11] under the same networking assumption. [12] utilized the
spatially-localized sparse projections based on the observation
that the measurement matrix had to take the sparse domain into
account. The routing-dependent or domain-dependent design
of the measurement matrix, unfortunately, contradicts to the
nature of CS that measurement matrix can be random and
easily generated. Neither of these measurement matrices in
[7], [10]–[12] can recover CS aggregated data from arbitrarily
deployed networks which is one of the key issues we address
in this paper.

A remarkable recent work by Sartipi and Fletcher [4]
proposed a compressive distributed sensing using random
walk (CDS(RW)). Their measurement matrix is said to be
independent of routing algorithm and network topologies using
rateless coding, which shares the same design characteristic as
our DCSS algorithm. In Section VI we will mainly compare
the recovery results with SRP and the intercommunication cost
with CDS(RW).

III. BACKGROUND ON COMPRESSIVE SAMPLING

The basic compressed sensing problem is to estimate a
vector x ∈ Rn from a set of linear measurements y = Φx,
where y ∈ Rm and Φ is a known m× n matrix. This method
greatly reduces the number of digital samples required to
reconstruct from highly incomplete information, typically well
below the number expected from the requirements of the Shan-
non/Nyquist sampling theorem. The key idea in compressed
sensing is that if the signal x is constrained to be sparse or
approximately sparse, then it is possible to recover x even
when m � n. More precisely, one of the basic results in
compressed sensing is that there exist matrices Φ with only
m = O(k log(n/k)) rows such that for all k-sparse x, i.e.,
all x with at most k nonzero components, we can recover x
exactly from y = Φx. Furthermore, it has been observed that
recovery can be accomplished in polynomial time via linear
programming (LP), provided that the measurement matrix Φ
satisfies certain technical conditions [3], [13], [14]. In the
following, we briefly describe the theories and properties
related to compressive sampling.

A. Sparse/Compressible Signal Model

We categorize the general signals used in this paper into
two classes.

1) k-sparse signals: We say that an n-dimensional signal
x is k-sparse if it has k or fewer non-zero components:

‖x‖0 := |supp(x)| ≤ k � m,x ∈ Rn

where |supp(x)| denotes the cardinality of the support set of x,
and thus ‖x‖0, namely the number of non-zero components,
is a quasi-norm.

2) Compressible signals: We consider a real data vector
x ∈ Rn, and fix an orthonormal transform Ψ ∈ Rn×n
consisting of a set of orthonormal basis vectors {ψ1, · · · , ψn}.
Ψ can be, for example, a Wavelet or a Fourier transform. The
transform coefficients Θ = [ψT1 x, · · · , ψTn x]T of the data can
be ordered in magnitude, so that |θ1| ≥ |θ2| ≥ · · · ≥ |θn|. The
best k-term approximation keeps the largest k transform coef-
ficients and discards the remaining as zero. The approximation
error is ‖x− x̂‖22 = ‖Θ− Θ̂‖22 =

∑n
i=k+1‖θi‖2.

According to CS literature [2], [3], the data is compressible
if the magnitude of its transform coefficients decay like a
power law. That is, the ith largest transform coefficient sat-
isfies |θi| ≤ Li−

1
p , where L is some positive constant, and

0 < p ≤ 1. Note that p controls the compressibility (or rate
of decay) of the transform coefficients (i.e., smaller p implies
faster decay). The approximation error, is then

‖x− x̂‖2 = ‖Θ− Θ̂‖2 ≤ αpLk−1/p+1/2



where αp is a constant that only depends on p. Of course,
sparse signals are special cases of compressible signals. Figure
1 shows the power-law decay curve and the k-term approxi-
mation with respect to the sorted index of the coefficients.

B. Measurement Matrices and Sparse Recovery Problem

The measurement matrix, Φ, is very important since it
largely affects the process of sampling the system as well
as determining how good the recovery is. We could also
consider the measurement matrix as a sampling operator that
preserves some suitable conditions under which the signal can
be recovered exactly or with high probability. Recent years, a
lot of good papers have already advanced the research on this
topic [15], [16].
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Fig. 1: The power-law decay curve and k-term approximation.

One of the most commonly used conditions for the mea-
surement matrix is the Restricted Isometry Property (RIP)
introduced by Candes and Tao [17]. RIP essentially requires
that every subset of column of Φ with certain cardinality
approximately behaves like an orthonormal system. For an
m×n matrix Φ and an integer k, 1� k � p, the measurement
matrix Φ should satisfy the restricted isometry property.

Definition: An m × n matrix Φ has the k-restricted
isometry property (k-RIP) with constant δk > 0 if, for all
x ∈ Rn,

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22 (2)

In other words, the k-RIP ensures that all submatrices of Φ
of size m×k are close to an isometry, and therefore preserving
distance and information. Practical recovery algorithms typi-
cally require that Φ has a slightly stronger 2k-RIP, 3k-RIP,
or higher-order RIP in order to preserve distances between
k-sparse vectors (which are 2k-sparse in general), three-way
sums of k-sparse vectors (which are 3k-sparse in general), and
other higher-order structures, respectively.

It is important to note that RIP conditions are difficult
to verify for a given matrix Φ. A widely used technique
for avoiding checking the RIP directly is to generate the
matrix randomly and to show that the resulting random matrix
satisfies the RIP with high probability using the well-known

Johnson-Lindenstrauss Lemma. See, for example, Baraniuk, et
al. [16]. This is typically done for conditions involving only
the restricted isometry constant δk.

We consider the sparse recovery problem as the recovery
of the k-sparse signal x ∈ Rn from its measurement vector
y = Φx ∈ Rm. If a matrix Φ satisfies certain RIP property,
then the recovery process can be accomplished by finding a
vector x∗ using the following linear program:

min‖x∗‖1 Φx∗ = Φx. (Sparse Recovery)

IV. DESIGN OF THE COMPRESSIVE SAMPLING MATRIX

In this section, we will first give the definition on the
expander graph and the connection between the expander
graph and the CS measurement matrix. We then describe the
procedure on how to design the sparse binary matrix that
resembles the expander graph with high probability. Lastly,
some practical issues on using the sparse binary matrix as
sensor subset selection matrix are discussed.

A. Expander Graph

Definition: A (k, ε)-unbalanced expander is a bipartite
graph G = (U, V,E), (i.e., edges only exist between nodes
in set U and set V ; no edges exists between two nodes in set
U or two nodes in set V ), |U | = n, |V | = m with left degree
d (i.e., each node in U is connected to d nodes in V ) such
that for any X ⊂ U with |X| ≤ k, the set of neighbors N(X)
of X (i.e., nodes in V that are connected to nodes in X) has
size |N(X)| ≥ (1− ε)d|X|, for all 0 < ε < 1.

For example, the bipartite graph G = (U, V,E) in Figure
2 is called a (k, ε)-expander if for any subset of left nodes
X , with cardinality |X| ≤ k, they are connected to at least
(1− ε)|E(X)| right-hand side nodes (namely the neighbors of
X , denoted by N(X)), where |E(X)| = d|X| is the set of
links that go from X to the right-hand side nodes. In other
words, if we define the bi-adjacency matrix T = [tik] where
tik = 1 iff node i in U is connected to node k in V , then
|E(X)| is the total number of nonzero elements in the columns
corresponding to X in the bi-adjacency matrix of the bipartite
graph G, |N(X)| is the number of nonzero elements in rows
in the bi-adjacency matrix.

B. Connection between Expander Graph and CS Matrices

We consider the CS matrices that are binary and sparse.
They have only a small number (i.e., d) of 1’s in each
column, and all the other entries are equal to zero. It has been
shown recently [18] that such matrices cannot satisfy the RIP
property with parameters k and δ, unless the number of rows is
Ω(k2). Recent result in [19] demonstrated that such matrices
satisfy a different form of the RIP property, namely RIP-p
property if for any k-sparse vector x, ‖Φx‖p = (1 ± δ)‖x‖p
holds. In particular, it shows that this property holds for
1 ≤ p ≤ 1 + O(1)/ log n if matrix Φ is an adjacency matrix
of a high-quality unbalanced expander graph, where “high-
quality” refers to an expander with ε as small as possible,
creating an expansion as large as possible.



Fig. 2: An unbalanced expander graph: any sufficiently small
subset X on the left has a neightborhood N(X) of size at least
(1− ε)d|X|.

The relationship between the adjacency matrix, the
(k, ε)-unbalanced expander graph, and the RIP-p property of
the adjacency matrix have been extensively studied by Berinde
et al. in [19]. The main results (see Theorem 1, 2, 3 in [19])
stated that: (1) The adjacency matrix of a (k, ε)-unbalanced
expander graph satisfies the RIP-p property, which can be used
for guaranteed CS recovery problem in (Sparse Recovery).
(2) Any binary matrix Φ with each column having τ 1’s and
satisfying the RIP-p property with proper parameters, must be
an adjacency matrix of a good unbalanced expander. That is,
a RIP-p matrix and the adjacency matrix of an unbalanced
expander are essentially equivalent. (3) If Φ is an adjacency
matrix of an expander graph, then the Linear Programming
(LP) decoding procedure can be used for recovering sparse
approximations and provide recovery guarantees for the prob-
lem (Sparse Recovery).

C. CS Matrix Design

We will now begin to give the procedure on how to design
the binary sparse matrices to serve as the measurement matrix
used in compressed sensing. A binary sparse matrix Φ of m
rows and n columns is generated in the following steps:

• Step 1: For each column, randomly generate τ integers
whose values are between 1 and m and place 1’s in
those rows indexed by the τ numbers;

• Step 2: If the τ numbers are not distinct, repeat Step 1
until they are (this is not really an issue when τ � m).

Based on the above facts and with some proper value of τ
(e.g., τ = 8 in our experiments), we see that such a matrix is
the adjacency matrix of an expander graph of degree τ with
high probability.

D. Binary Matrix for Sensor Subset Selection

1) Sensor Subset Selection Problem: By definition, the
sensor subset selection problem is to choose a set of m
sensor measurements, from a set of n possible or potential
sensor measurements. Solving this problem by evaluating the
performance for each of the Cmn possible choices of sensor

measurements is not practical unless m and n are small.
Broadly speaking, this problem belongs to traditional feature
selection problem.

A large class of algorithms have been developed that
search for optimal solutions (e.g., exhaustive search, branch
and bound, genetic algorithm) and deterministic suboptimal
solutions (e.g., sequential forward selection, sequential back-
ward selection). We now consider the zero-one matrix, Φ, with
elements {φij} and the feature set F with elements, {fj},
j = 1, 2, · · · , n. Defining φij = 1 if we select the set element
fj and φij = 0 otherwise. In the sensor subset selection
problem, we view

∑m
i=1 φijfj , j = 1, 2, · · · , n as the selection

of m sensor measurements from totally n number of sensors.
Thus the sparse binary measurement matrix naturally severs as
a sensor selection matrix.

2) Fairness of the Subset Selection Process: Since the
sparse binary projection matrix we proposed can also be seen
as a sensor subset selection matrix for choosing m designated
sensors to communicate with the FC, it is important to evaluate
its fairness in sensor selection to avoid leaving “holes” in the
network due to extensive energy consumption for computation
and communication on only a few sensor nodes. In this case,
a balanced energy consumption among all the sensor nodes
is obvious since the proposed sparse binary projection matrix
has exactly τ 1’s along each column confirming that every
sensor nodes in the WSN will be selected to be active τ times
during the entire process of distributed data aggregation for
recovery of n-dimensional data value x. The only imbalance
energy consumption comes from these designated sensors
which compute and report the projections to the FC through
shortest path. However, since m � n and the measurement
matrix can be re-generated each time a query task is performed,
in the long run, the energy consumption can still be balanced.

V. DISTRIBUTED COMPRESSIVE SPARSE SAMPLING
ALGORITHM

In this section, we first define the network model for
Distributed Compressive Sparse Sampling (DCSS) algorithm
followed by the detailed algorithm description.

A. Network Model

Consider a wireless network of n sensors with diameter
d hops. The FC is placed at the center of the deployment
area with average distance of nodes from the FC of O(d)
hops. We consider that sensor nodes are time synchronized
and are densely deployed in a homogeneous large-scale WSN,
where sensor data tends to be correlated in both time and
space. Assume each of the n nodes acquires a sample xi,
i = 1, 2, · · · , n, which is k-sparse or compressible. The
ultimate goal for the sparse recovery problem in WSN is
to gather sufficient information to recover the n-dimensional
signal (i.e., sensor readings) x = [x1, · · · , xn]T at the FC while
minimizing some other criteria (e.g., intercommunication cost,
energy).

According to this network model, we assign each sensor
node with an ID, s1, · · · , sn. Based on the CS theory, the FC
only needs to receive m measurements to recover the readings
of all sensors, we thus assign m designated sensors based on
the sparse binary matrix and these designated sensors marked
as D1, · · · , Dm, will send there measurements to the FC.
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Fig. 3: (a) Sensor readings projection can be seen as generating
a bipartite graph between the n data nodes and the m encoding
nodes. (b) Example of observations from sensor data projection
using sparse binary matrix.

B. DCSS Algorithm

Consider an m × n sparse binary matrix Φ with entries
defined in Section IV. Each sensor will compute and store the
inner product

∑n
j=1 Φijxj between the aggregate data x and

one row of Φ. See Figure 3 (a), we think of this as generating
a bipartite graph between the n data nodes and the m encoding
nodes. Figure 3 (b) shows that the m encoding nodes can be
used as the m observations to reconstruct an approximation
of x. The m encoding nodes correspond to the m designated
sensors in the network. Below is the description of the DCSS
algorithm.

Algorithm 1 Distributed Compressive Sparse Sampling Algo-
rithm (DCSS)
Input:

Sparse binary matrix Φ ∈ Rm×n;
Environmental reading x ∈ Rn;

Output:
Recovered vector x∗ ∈ Rn;

1: The fusion center (FC) generates a sparse binary matrix
Φ and each sensor node in the network stores it locally;

2: For each individual sensor sj , (1 ≤ j ≤ n) , if φij 6= 0,
then sensor node sj sends its reading xj to designated
sensor ID Di through shortest path;

3: For the m designated sensors D1, · · · , Dm, each computes
and stores the sum of the reading it receives;

4: Finally, the m designated sensors send their results to the
FC through shortest path and the FC performs compressed
sensing recovery for x∗.

From the above DCSS algorithm, we see that for each indi-
vidual sensor, φij ·xj means that sensor sj sends its readings xj
to the designated sensor Di, if φij 6= 0. Correspondingly, the
designated sensor Di computes and stores the summation of
the sensor reading it receives, and the m designated sensors
then report y1, y2, · · · , ym, as observations y ∈ Rm to the
FC. This process is shown in Figure 4. In this figure three
projections are initialized using the sparse binary matrix to
aggregate data to the designated sensor nodes D1, D2, and D3.
For example, sensor node s2, s4, and s22 send their readings
through shortest path to designated sensor D2 (marked by

Designated Sensor 1

Designated Sensor 2

Designated Sensor 3

Fusion Center

FC

Data to FC

Routing Path

D2

D1

D3S4

S5

S9

S11

S16

S2

S22

Fig. 4: Example of the DCSS algorithm using sparse binary
matrix through shortest path.

TABLE I: Communication cost of different CS algorithms.

Algorithm Cost
DS O(kn logn)

SRP [9] O(kd log2 n)
CDS(RW) [4] O(k(t+ d) logn)
Sparse Binary O(k(τω + d) logn)

dashed lines). Node D2 then adds the value of all the three
sensor readings it received and sends the generated projection
to the FC through the shortest path marked with solid line.
The same procedure is applied to the designated sensors D1

and D3. After collecting all the m observations, the FC will
recover the original signal x ∈ Rn using Linear Programming.

C. Communication Cost

It is proven that independent and identically distributed
random Gaussian and Scrambled Fourier matrices can be
used as measurement matrices for CS [2]. The projections
generated by these measurement matrices are called Dense
Sampling (DS), since a majority of the entries in Φ are non-
zero. Assuming that the original signal can be recovered using
m = O(k log n) measurements, based on our network model
(i.e., average bit-hop cost per reading), the communication cost
for obtaining O(k log n) projections using DS is O(kn log n).
Also, it was shown in [4] that the communication cost under
the same network model for SRP is O(kd log2 n), and the cost
of CDS(RW) is O(k(t+ d) log n), where t is the mixing time
of random walk and can be found through simulation.

In order to analyze the communication cost for the pro-
posed DCSS algorithm, we assume ω to be the average row
weight of the sparse binary measurement matrix, τω as the
cost of gathering the sensor readings for each projection (i.e.,∑n
j=1 Φijxj), and additionally, d as the cost to send the

projection to the FC. Thus, for the generation of O(k log n)
projections the total cost is O(k(τω + d) log n). Table I
summarizes the communication cost of the aforementioned
algorithms.



VI. EXPERIMENTS

In this section, we analyze the performance of the various
schemes on both synthetic and real datasets. The experimental
design is described first.

A. Experimental Design

(1) Data aggregation schemes: The random Gaussian or
Scrambled Fourier measurement matrices are often used in
the CS community as Dense Sampling measurement matrices
(DS). Throughout the experiments, we use scrambled Fourier
as the DS matrix, similar results have also been obtained on
random Gaussian matrices. We also consider Sparse Random
Projections (SRP) via shortest path. It has been shown that with
s = n

logn and O(k log n) projections, the reconstruction qual-
ity is as good as with obtaining the largest k-approximation
[9] given that the data is bounded by the peak-to-total energy
condition (i.e., for signal u, ‖u‖∞‖u‖2 ≤ C, for some constant C ).
We compare results from using the sparse binary matrix with
SPR with s = 64 and s = 128, respectively.

For the synthetic data experiment part, we test the recovery
of the exact k-sparse signals, noisy sparse signals with different
noise levels, and compressible signals. In the real experiment,
the real data are collected from a WSN deployed in the
Intel Berkeley Research Laboratory. The network recorded
temperature, humidity, light and voltage measurements at
31-sec intervals. In our experiments, we use the light intensity
readings at node 19. The data values are represented by
wavelet coefficients to obtain a compressible representation.
Throughout the experiments, we assume the data value x we
want to recover is in 1024-dimension. For the CS recovery
algorithm processed in the FC, we use linear programming
method in the popular `1-magic package [20].

(2) Evaluation metrics: The reconstruction quality is
measured using the relative reconstruction error defined as
follows:

ε =
‖x− x∗‖22
‖x∗‖22

, (3)

where x is the value of the original signal, while x∗ is the
reconstructed signal.

B. Exact Sparse Signal Recovery

We consider a sparse vector x with length n = 1024
contains only ±1, and set the sparsity level k = 30 (i.e., x
only has 30 non-zero entries).

In Figure 5 we show the recovery error ε as a function of
the number of measurements m. We run the recovery process
100 times with the same sparse signal x each round but with
different measurement matrices. The result demonstrates that
the sparse binary matrix is as good as the dense sampling ma-
trices in terms of recovery performance, while sparse random
project with sparseness parameter s = 128 performs the worst.

C. Noisy Sparse Signals Recovery

We consider the same sparse signal x but with different
noise levels that occurred during the sensor data recording and
data transmission stage. In our experiments we manually add
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Fig. 5: Recovery result of an n = 1024, sparsity k = 30
sparse signal x, with an average of 100 experiments using LP
recovery method.
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Fig. 6: Noisy recovery result of an n = 1024, sparsity k =
30 sparse signal x, with different SNRs (5, 15, 25, and 35)
and an average of 100 experiments using LP recovery method
evaluated by different measurements.

different noise levels to the sparse signal x. We show in Fig-
ure 6 the recovery performance of noisy signals with different
number of measurements m. We use four different noise levels
with the signal to noise ratio (SNR) being 5, 15, 25, and 35,
respectively. The results are obtained by an average of 100
experiments using the same noisy signal x in each round. We
observe that the higher the noise level, the worse the recovery
accuracy for all data aggregation schemes. It is true because
CS normally requires the sparsity feature of the signals while
adding more noise causes the signal to be less sparse. SPR with
larger sparseness parameter (i.e., s = 128) generally performs
worse than with smaller s. Since large s means less sensor
reading projections transmitted to the FC which will affect
the CS sparse recovery performances. For dense sampling, the
recovery performance is not very stable on various SNRs, e.g.,
for the case when SNR = 25, DS performs much worse than



our sparse binary matrix, while in all other cases, DS can be
as good as our proposed sparse binary matrix. We also see that
the sparse binary matrix performs the best among all schemes
in the most noisy case when SNR= 5.

D. Compressible Signal Recovery

While a strict sparse signal is rare in reality, we conduct
experiments on compressible signals which obey a decay
signal model, x = 4n−

7
10 . We then sample the signal x to

get n = 1024 data points. We compare the recovery result
using different matrices and various measurements. The best
k-term approximation is obtained by only keeping the first k
coefficients while setting the rest to zero. Based on the com-
pressible signal model in Section III, it can serve as a baseline
of the recovery performance evaluation. Figure 7 demonstrates
that sparse binary matrices perform the best for compressible
signals in the sense that it has the closest recovery result to the
known best k-term approximation. Although dense matrices
also achieve good performance, this only occurs when the
number of the measurements arrives at certain amount (e.g.,
m = 900).

E. Experiment using Real Data

In this experiment, we consider the dataset [21] for tem-
perature, humidity, and light readings from a group of nodes
deployed at the offices of Intel Research Labs in Berkeley,
CA. The signals were recorded in an office environment and
therefore exhibit periodic behavior caused by the activity levels
during day and night. Therefore, we expect the signals to be
compressible in the wavelet domain.

We consider the recovery from CS measurements for the
light intensity signal at node 19. We obtain different number
of CS measurements for the signal using the sparse binary
matrix, sparse random projections, and dense sample matrices.
Figure 8 plots the recovered signal using 100 coefficients for
wavelet approximation and 400 coefficients for dense sampling
matrix, sparse binary matrix, and sparse random projections.
We observe that wavelet approximation gives us more smooth
signal profile than the other measurement matrices. However,
the recovered SNR is not the best. Dense sampling and sparse
binary matrices all perform well on recovering the details
around data point position 200 and 500 and sparse binary
matrix has the recovered SNR equals to 25.5702, which is
the highest among the three. SRP has the worst SNR since
the peak-to-noise condition is violated for real data. Table II
shows the detailed SNRs of the recovered signal.

We also evaluate the recovery performance using the rel-
ative approximation error metric. Figure 9 shows the result
compared to various recovery methods. Since the proposed
sparse binary matrix also serves as the sensor selection matrix,
we conduct experiment to compare the sensor selection result
versus random sensor selection. The experiment shows that
the sparse binary matrix outperforms all other methods when

TABLE II: Recovered SNR of different measurement matrices.

Methods Wavelet approx. Sparse binary Dense sampling SRP (s = 64)
SNR 21.4735 25.5702 22.8528 10.9653
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Fig. 7: Recovery result of a sampled compressible signal x =
4n−

7
10 , with an average of 100 experiments using LP recovery

method evaluated by different measurements.
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Fig. 8: Recovery result of real Intel lab signal using 100
wavelet coefficients and 400 CS measurements with different
measurement matrices.

the number of measurements is less than 300 except for the
wavelet approximation. When the number of measurements
increases, the sparse binary matrix has the closest recovery
results with random selection sampling, which in turn demon-
strates the fairness of our sparse binary matrix on sensor
selection in Section III. The random selection of sensors works
good when the number of measurements is around 700 and
performs poorly when the number of measurements is either
too small or too large. For SRP, the recovery fails when the
measurements equal to 100 and 200. We also observe an
interesting relation between the relative recovery error and the
number of measurements for sparse random projections, dense
sampling, and random selection sampling, where increasing the
number of measurements actually degrades the recovery per-



formance. The reason is that the real signal in the transformed
wavelet domain is not sparse enough for reliable CS recovery.
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Fig. 9: Recovery result of real Intel lab signal, with an average
of 100 experiments using LP recovery method evaluated by
different measurements.

VII. CONCLUSION

In this paper, we presented a novel distributed compressed
sensing algorithm based on sparse binary matrix for data
recovery in WSNs. We constructed a sparse binary matrix that
resembles the unbalance expander graph with high probability
for CS measurement matrix. We showed that the sparse binary
matrix can be used for sensor selection for distributed data
aggregation to the designated sensors in the network while
keeping intercommunication cost very low. The experimental
results showed that using the sparse binary matrix, the accuracy
of recovery can be as good as the traditional dense CS
measurement matrices and the proposed sparse binary mea-
surement matrix worked the best on compressible data. Results
from both synthetic and real data experiments demonstrated the
usefulness of the proposed distributed CS algorithms using
sparse binary matrix for both sensor selection and sparse
recovery.
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