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ABSTRACT
Anomaly detection becomes increasingly important in hyper-

spectral image analysis, since it can now uncover many ma-

terial substances which were previously unresolved by multi-

spectral sensors. In this paper, we propose a Low-rank Tensor

Decomposition based anomaly Detection (LTDD) algorithm

for Hyperspectral Imagery. The HSI data cube is first mod-

eled as a dense low-rank tensor plus a sparse tensor. Based

on the obtained low-rank tensor, LTDD further decomposes

the low-rank tensor using Tucker decomposition to extract the

core tensor which is treated as the “support” of the anomaly

spectral signatures. LTDD then adopts an unmixing approach

to the reconstructed core tensor for anomaly detection. The

experiments based on both simulated and real hyperspectral

data sets verify the effectiveness of our algorithm.

Index Terms— Hyperspectral imaging, anomaly detec-

tion, low-rank approximation, tensor decomposition

1. INTRODUCTION

Hyperspectral images (HSI) attract more and more interest-

s in recent years as a suitable tool for target detection and

recognition in many applications including search-and-rescue

operations, mine detection and military usages. Among all

these usages, Anomaly Detection (AD) has received a lot of

attention for various applications. The aim of anomaly detec-

tion is to detect pixels in the hyperspectral data cube whose

spectra differ significantly from the background spectra with

no a-priori knowledge [1].

Many real world problems involve signals that are mul-

tidimensional or tensor data. HSI can also be modeled as a

three-dimensional tensor, with the first two dimensions indi-

cating the spatial domain and the third dimension indicating

the spectral domain [2]. The classical matrix-based anomaly

detection methods require to rearrange the tensor into a two-

dimensional matrix, then process in the column space, and

finally rebuild the tensor. To avoid the rearranging and re-

building steps where the spatial correlation would be lost, the

tensor-based anomaly detection methods can be used directly

to process the HSI by employing multilinear data analysis.
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In this paper, we propose a Low-rank Tensor Decompo-

sition based anomaly Detection (LTDD) algorithm. The HSI

data cube is then modeled as a dense low-rank tensor plus a

sparse tensor. The dense low-rank tensor captures the spec-

tral background as well as the anomaly signatures while the

sparse tensor represents the noises and arbitrary errors with-

in the data. Based on the obtained low-rank tensor, LTDD

further decomposes the low-rank tensor using Tucker decom-

position [3] to extract the core tensor from the low-rank ten-

sor. The core tensor is treated as the “support” of the anomaly

spectral signatures, where we apply an unmixing approach to

the reconstructed core tensor for anomaly detection.

The rest of this paper is organized as follows. In Section 2,

we discuss some related works. In Section 3, we introduce

some background on tensor decomposition. In Section 4, we

discuss the proposed LTDD algorithm. Performance evalua-

tion on using LTDD and existing algorithms is shown in Sec-

tion 5. Section 6 concludes the paper.

2. RELATED WORKS

Most common statistical ADs are outlined in the tutorial

overview by Matteoli et al. [4]. In the literature, the most

popular approach is the Reed-Xiaoli (RX) detector [5], which

is derived from the generalized likelihood ratio test. The RX

requires that the covariance matrix be estimated from the

neighborhood pixels of the target pixel, i.e., the local back-

ground. The RX by definition is prone to high false alarms

because the local Gaussian assumption is largely inaccurate.

Local RX [6] is then proposed to force stability upon the

pixels that are locally defined with respect to a window size

to reduce the bias and error when estimating the mean and

covariance, respectively.

Another anomaly detection approach is called Projection

Pursuit (PP) [7, 8]. It searches for an optimal projection that

the anomaly component will become the most obvious in a

subspace. However, searching the optimal projection is usu-

ally very computationally intensive, which hinders the real-

time data processing.

The anomaly detectors mentioned above are all basical-

ly conducted from the statistical perspective. Recently, there



have been many approaches using high-order statistics [9,10].

Specifically, Geng et al.’s work published in Nature [11] pro-

posed to use high-order statistical tensor based algorithm

for AD. In their work, a third-order statistical tensor (i.e.,

coskewness tensor) was introduced and proposed a detection

method based on higher order singular value detection to

extract anomalies. The idea of sparse and low-rank modeling

has been applied in many areas, e.g., background model-

ing in surveillance video processing [12], band selection

in HSI [13], nonlinear hyperspectral image unmixing [14]

and pedestrian tracking and recognition [15]. Low-rank and

tensor based methods have also been applied in HSI, for ex-

ample, Zhang et al. [16] proposed to use low-rank matrix

recovery for HSI restoration. Similarly, the tensor based HSI

denoising was introduced in [17].

3. BACKGROUND ON TENSOR DECOMPOSITION

Tensor decompositions allow us to approximate tensor data

sets by models depending on few parameters, i.e., less pa-

rameters than the total number of entries of the tensor. This

reduction of degree of freedom allows us to capture the essen-

tial structures in multidimensional data sets. Generally, tensor

decomposition takes two forms: the Canonical Polyadic (CP)

decomposition and Tucker decomposition [18]. The goal of

tensor decomposition in data reduction applications is to find

a good multilinear rank (r1, r2, · · · , rd) approximation to the

order-d tensor T ∈ R
n1×n2×···×nd , i.e., minA‖T −A‖2F with

A ∈ R
n1×n2×···×nd restricted to be of rank (r1, r2, · · · , rd)

and ri ≤ ni. This approximation problem is well-posed, but

does not have a known closed-form solution [19]. For ex-

ample, CP approximates a tensor with a sum of d rank-one

tensors. It often can be unique up to permutation of the rank-

1 terms and up to scaling/counterscaling of the factors in the

same term. Tucker approximation is useful for dimension-

ality reduction of large tensor datasets and is also importan-

t when one wishes to estimate signal subspaces from tensor

data [17]. A reduced-rank approximation is simply obtained

by restricting the factor matrices of T ,Ui ∈ R
ni×ni , where

T = C ×1 U1 ×2 U2 ×3 · · · ×d Ud and C ∈ R
n1×n2×···nd is

the core tensor, to the first r1, r2, · · · , rd columns.

4. LTDD ALGORITHM

In this section, we present the LTDD algorithm by first dis-

cussing how to model the HSI tensor as a dense low-rank

tensor plus a sparse tensor as well as how to solve for the

dense low-rank tensor and the core tensor, following which,

we introduce the unmixing based approach for the anomaly

detection.

4.1. Robust Low-rank Tensor Decomposition

In HSI, the data volume often displays a low-rank structure

due to significant correlations in the spectra of neighboring

pixels [16]. In practice, the underlying tensor data is often

low-rank, even though the actual observed data may not be

due to noises and arbitrary errors. Therefore, the major part

of the variation in the data is often governed by a relative-

ly small number of latent factors. Based on this assump-

tion, we model the HSI data as the three-dimensional ten-

sor GI1×I2×I2 = S + L, where S is a sparse tensor and

L is a dense low-rank tensor. Moreover, L lives in a low-

dimensional manifold that changes slowly across differen-

t spectral bands, whereas S corresponds to more transient and

spontaneous objects. In the context of AD for HSI, L is the

superposition of spectral background and the anomaly signa-

tures, while S is the noises and arbitrary errors.

In order to separate the low-rank tensor from the noisy

tensor data subject to noise and arbitrary errors, we employ

the idea of robust PCA (rPCA) [20] to high-order tensor data

[21] as follows:

min
S,L

Trank(L) + λ‖S‖0, s.t. G = S + L, (1)

where Trank(·) denotes the Tucker decomposition. The algo-

rithm to solve Eq. (1) is known as HoRPCA (Higher Order

RPCA) proposed in [21]. Once we get optimal L result, the

Tucker decomposition of the core tensor C can be reconstruct-

ed as follows:

C = L ×1 (U
(1))T ×2 (U

(2))T ×3 (U
(3))T (2)

where U(i) is the left factor matrix from the SVD of L(i).

Thus, we can recover the Tucker decomposition, i.e., the

subspaces along each mode, of the low-rank tensor L from

its corrupted version without the need to specify the target

Tucker-rank.

The idea is that by first modeling G = L + S , we will

be able to reduce the noise and errors and then condense the

raw HSI into a compact format where only the anomaly re-

flectance lie in (e.g., anomaly detection). The basic assump-

tion here is that the low-rank core tensor C, which denotes

pixels that have distinct spectral differences and a small num-

ber of quantity, is “supported” by these anomaly spectral sig-

natures.

4.2. Anomaly Detection through Unmixing

After obtaining the core tensor C from the low-rank tensor

L of the original HSI, we introduce a final anomaly extrac-

tion through unmixing process on the reconstructed core ten-

sor data cube. Note that this step is different from the com-

mon unmixing process which is to estimate the material sig-

natures and abundances. The purpose for the unmixing step



here is to extract the anomaly signature purely as the core

tensor data cube is only supported by these anomaly signa-

tures. Therefore, the number of endmembers for the unmix-

ing process can then be pre-determined to the size of the core

tensor data cube, which in practice is very small and makes

the unmixing process very efficient in computation. For the

proposed LTDD algorithm, we adopt the popular nFINDR al-

gorithm [22] with fixed endmember parameter q. After ob-

taining the endmember signatures, we use the non-negative

constrained least squares (NNLS) [23] to find the “anomaly”

abundance map(s).

(a) Synthetic (b) AF image (c) Mastcam Solday 183

(d) GT for (a) (e) GT for (b)

Fig. 1. First row: visual images of the three HSI datasets, sec-

ond row: ground truth image of the synthetic and AF image

respectively.

5. EXPERIMENTAL RESULTS

In this section, we will evaluate the performance of the pro-

posed LTDD algorithm on one synthetic and two real HSI

datasets and compare with existing approaches. We first dis-

cuss some experimental settings, followed by some visual and

quantitative performance results.

5.1. Experimental Settings

We use three HSI datasets for evaluation purpose. The first

one is a synthetic hyperspectral data, where 49 dots are manu-

ally added to the 94-band image data of spatial size 150×103.

The 49 dots are with different anomaly percentage varying

from 5% to 100%. The second dataset is a testing image from

Air Force (AF image) with 4 aluminum panels (Black, Green,

Tan, and Silver) representing the anomaly in the scene. The

dimension of the AF image is 267 × 342 × 124. The third

dataset is the Mars Rover Mast camera solday 183 dataset 1

from both the right and left cameras after calibration which

1http://pds-imaging.jpl.nasa.gov/volumes/msl.html

has a dimension of 598 × 670 × 12. For both the synthet-

ic and AF images, there are ground truth (GT) data available

for performance evaluation purpose. However, for the Mast-

cam Solday 183 image, we do not have GT. The objective is

to find the hydration materials which mostly appears in the

drilled hole and the cracks of the soil surface as provided by

NASA. The visual images of the three data sets as well as the

available GT are shown in Fig. 1.

We evaluate all the algorithms based on quantitative met-

rics. With a gray image of the anomaly response, we use d-

ifferent threshold values to convert the detection results in-

to different binary images, from which we can identify the

anomaly pixels. When compared to the ground truth of the

anomaly pixels, we can calculate the detection ratio (dr) and

the false alarm ratio (fr). By arranging the x-axis as the fr

while the y-axis as the dr, the closer the curve approaching the

top-left corner of the graph, the more effective and robust the

detection performance, meaning that the approach provides

high detection ratio with low false alarm ratio.

We also compare LTDD with some existing approaches.

The first one is the benchmark RX algorithm [5]. RX has been

applied to both multi and hyper-spectral images successfully

in terms of anomaly detection. In fact, the expression of RX

is equivalent to the Mahalanobis distance. The second one is

a variant of RX, LRX, which estimates the background using

local statistics (i.e., mean and covariance matrix within pixels

of a given window size). Lastly, we also compare with the

projection pursuit (PP) algorithm [7]. PP is a technique that

uses one or more linear combinations of the original features

to maximize some measure of “interestingness”. Then, the

optimal projection can be searched by either some evolution

algorithm or performing the exhaustive search of the pixel-

spectrum. In the experiments, we use Matlab Tensorlab
toolbox [24] for Tucker decomposition. For LRX, we set the

local window size as 11× 11.

5.2. Results Analysis

We first conduct comparisons between different approaches

based on two HSI datasets (synthetic and AF image) with

ground truth.

Fig. 2 visually demonstrates the detection results on both

the synthetic and AF images. From the detection results of

the synthetic HSI data, we can find that the local RX perform-

s the best. This is mainly because all the pixels of anomaly

are small points with uniform size, the LRX is the most suit-

able approach to detect this kind of anomalies. The proposed

LTDD algorithm also performs well and is comparable to PP

with a false alarm rate around 0.04 as shown in Fig 3(a).

For AF image, we see that LTDD performs best among

all the approaches. This is largely due to the homogeneous

background of the AF image, which is perfect to be modeled

as a low-rank tensor, LTDD is then able to find the “support”

anomalies by way of unmixing.



(a) Local RX (b) PP (c) RX (d) LTDD

(e) Local RX (f) PP (g) RX (h) LTDD

Fig. 2. Detection results of the synthetic image (first row) and

AF image (second row) with different approaches.
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Fig. 3. Quantitative evaluation of the detection results on syn-

thetic image data (left) and AF image (right).

The reason for LRX and RX to perform worse might be

because that RX is prone to be dominated by the noticeable

outliers in the lower part of the AF image. Same case goes for

the PP algorithm. While for LRX it is difficult to predefine a

good window size to model the background and the anomaly

target in the window patch. Also the PP algorithm cannot

easily find the projection for the subspace of anomaly.

For the Mastcam Solday 183 data, since we do not have

exact GT, in order to detect the hydrated “anomaly” materials

which mostly appears in the drilled hole and the cracks of the

soil surface as provided by NASA. We plot the visual detec-

tion result of various approach. Based on visual inspection,

LTDD gives the best detection result visually.

(a) LRX (b) PP (c) RX (d) LTDD

Fig. 4. Visual detection results of the Mastcam sol183 data

with various approaches.

We also compare the computational time between differ-

ent approaches as listed in Table 1. All the experiments are

carried out on a laptop with 2 GHz Intel Core i7 CPU and 8

GB memory running Matlab R2014b. We notice that RX is

the most efficient algorithm. LTDD requires much less com-

putational cost as compared to LRX and PP, while keeping ac-

ceptable or comparable anomaly detection performance. Both

LRX and PP require much processing time since LRX basi-

cally runs RX in a patch by patch fashion and PP uses an

exhaustive search to find the optimal projection if any.

Synthetic AF image Mastcam Solday 183
LTDD 39 135 480

RX 4 15 10

Local RX 900 3400 Na
PP 644 7614 1930

Table 1. Comparison of processing time between different

approaches (in seconds).

6. CONCLUSION

In this paper, we presented LTDD based on low-rank and s-

parse tensor representation of the HSI data. The low-rank

tensor was further decomposed into a core tensor using Tuck-

er decomposition. An unmixing approach was then adopt-

ed for anomaly detection from the reconstructed core tensor.

Experiments were conducted on both synthetic and real HSI

datasets. Compared to the existing statistical anomaly detec-

tion approaches, LTDD performs well through both visual in-

spection and quantitative analysis while requiring much less

processing time.
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