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ABSTRACT 
 
Traditional anomaly detection methods either model the 
global background or the local neighborhood, that bring 
some apparent drawbacks, such as the unreasonable 
assumption of uni-modular background in global detectors, 
or the high false alarms by sliding windows in local 
detectors. In this paper, a source component-based anomaly 
detection approach is proposed. It first extracts the source 
components in the spectral image data cube by using the 
blind source component separation and then identifies the 
components that are anomaly (or salient) to other 
components. We interpret the anomaly detection as a matrix 
decomposition problem with the minimum volume 
constraint for the multi-modular background and sparsity 
constraint for the anomaly pixels. Experimental results show 
that the approach is promising for anomaly detection in 
spectral data cube.  
 

1. INTRODUCTION 
 
Anomalies in the remote sensing domain refer to pixels with 
two properties, i.e., distinct spectral differences and a small 
number of quantity with regard to the surrounding 
background pixels in the spectral feature space. For example, 
an airplane on the runaway of an airport presents a spectrum 
that is obviously different from that of the background 
runaway. Searching for those spectrally distinct and rarely 
appeared objects is the main task of anomaly detection. 
Generally speaking, unlike target detection, which needs the 
targets spectra in advance, anomaly detection methods 
require no prior spectral information about targets, but they 
do require a sufficient spectral difference between the 
targets of interest and their backgrounds. Hyperspectral 
imagery (HSI), a 3-D “image cube”, provides a wealth of 
spectral information to uniquely identify various materials 
by their spectrum, which makes it possible to distinguish 
different objects of interest based on their spectral 
signatures.   

In the literature of anomaly detection (AD), the most 
popular approach is the Reed–Xiaoli (RX) detector, which 
was introduced in [1]. It is built on the concept that a 
hypothesis testing can be formulated for a pixel vector and 
the conditional probability density functions (pdfs) under 
the two hypotheses (without and with anomaly) are assumed 

to be Gaussian. The solution to the resulting generalized 
likelihood ratio test turns out to be the Mahalanobis distance 
between the pixel under test and the background. Two 
typical variations of the RX have been studied: global RX, 
which estimates the background statistics (i.e., mean and 
covariance matrix) of the entire image, and local RX, which 
estimates the background using local statistics. There have 
been quite some other detectors proposed that belong to 
these two categories, e.g., the global detectors [2,3] and the 
local detectors [4,5]. The global detectors assume that all of 
the non-target pixels come from a homogenous background. 
However, this assumption might not be accurate in practice, 
since, in general, the background may not come from a 
single uni-modular space and thus it is difficult to estimate 
the statistics. In contrast, the local detectors use sliding 
windows to obtain nearby pixels for background statistics, 
such that the Gaussian assumption is more reasonable in a 
local region. However, the lack of global information in 
these local detectors may cause false alarms, e.g., the 
isolated pixels embedded in other homogeneous background 
may be detected as anomalies due to their small number in 
just its local neighborhood. In addition, the local detectors 
usually need to define the size of the moving dual window, 
but the sizes of targets are not easy to be estimated in 
advance, especially if the targets have different sizes.   

To overcome the drawbacks of the aforementioned two 
categories of approaches, this work proposes a 
nonparametric anomaly detection approach that estimates 
the background without assuming a pdf or estimating its 
covariance matrix, neither does it need local detection with a 
sliding window. The proposed detection approach is based 
on the idea that we find out the source components of the 
whole image data cube and identify which components are 
the most salient as compared to others. In the first step of 
source component retrieval, we can make use of the well-
developed unmixing techniques, such as VCA [6], MVC-
NMF [7], et al. With the source components, we explore the 
two properties of AD that are sparsity and saliency. That is, 
instead of dealing with the original spectral data, we focus 
on the source components. Explicitly, we expect to select 
several source components that are sparsely distributed 
spatially, and also have the largest accumulated distance to 
all the other source components.   

The uniqueness of the proposed approach includes: 1. It 
does not need to estimate the background statistics to model 



anomaly, instead, it uses saliency to define anomaly. 2. It 
does not need to use sliding window for local region 
modeling. We describe all the materials in image by source 
components. Therefore, our approach considers the whole 
statistics in the image without background estimation.  
 

2. SOURCE COMPONENT EXTRACTION 
 
In highly mixed hyperspectral data, each pixel is a mixture 
of responses from multiple materials. The basic formation 
model is expressed as:  
                                       X = AS + E                                (1) 
where the columns of X∈ Rl,n denote the observation 
vectors of n pixels measured at l spectral bands. A∈Rl,c is 
the material signature matrix whose columns correspond to 
the spectral signatures of c components or endmembers. The 
abundance vectors are represented by the columns of 
S∈Rc,n, which satisfy two physical constraints: first, each 
element of S is non-negative; second, the sum of column 
elements equals 1. E denotes the possible noise and errors.  

We use the minimum volume constrained non-negative 
matrix factorization (MNV-NMF) for source endmember 
extraction. MVC-NMF explores two important facts: first, 
the spectral data are non-negative; second, the constituent 
materials occupy the vertices of a simplex, and the volume 
of the simplex determined by the actual materials is the 
minimum among all possible simplexes that circumscribe 
the data scatter space. Combining the goal of minimum 
approximation error with the volume constraint, we arrive at 
the following constrained optimization problem:  

        minimize )(||||
2
1),( 2 AJASXSAf F λ+−=         (2) 

        subject to T
n

T
c SSA 11,0,0 =≥≥     

where J(A) is the penalty function, calculating the simplex 
volume determined by the estimated endmembers. The 
regularization parameter λ is used to control the tradeoff 
between the accurate reconstruction and the volume 
constraint.  

The simplex volume is calculated based on the 
connection between the volume and the determinant, which 
leads to:  
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where A~  is a low-dimensional transform of A given by 
PCA.  
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The detailed optimization is referred to [7]. After this step, 
each sample in X is converted to be represented by S, with 
each element in si, i=1:n, denoting the percentage of the 
corresponding endmember or source component.  

 

3. SALIENT COMPONENT EXTRACTION 
 
Byers et al [8] found the accumulated distance can be used 
for clutter removal and saliency discovery. The saliency 
object is defined as the one having the largest accumulated 
distance to the other objects. Therefore, in our application, 
after we obtain the c source components, we need to find out 
which component is the most salient one, then we can obtain 
the saliency mapping in the spatial domain of the image. In 
this way, we may even have the potential for subpixel 
anomaly detection.  

After the first step, we convert the spectral data from X 
into S, whose column represents the abundance of the 
source components in each spectrum. With S, we expect to 
identify some components that rarely appear in the 
coefficient matrix S but with the largest accumulated 
distance to the other source components. Therefore, the 
matrix S can be further decomposed into two parts:  
            DRS +=                                  (5) 
where R is the spectral data with salient components being 
removed, and D is the detected anomaly components. Since 
the source components in D have the uniqueness that their 
accumulated distances to the other remaining components in 
R are all relatively large, the components in R will form a 
compact shape in the hyperspace (small area size if in a 2-D 
plane), thus the volume of the simplex that circumscribes 
the data space that with only components in R will be small. 
Then, the objective function becomes:  
  minimize V(AR)+||D||1                                        (6) 
  subject to DRS +=   
where AR represents the original data with the source 
components in D being removed, or the orthogonal data 
subspace to the subspaces in D. Fortunately, the volume of 
(AR) can be approximated by the rank of (AR), also 
           rank(AR) ≤ rank(A)rank(R)                      (7) 
rank(A) is fixed, so minimize rank(AR) equals to 
minimizing rank(R), then (6) becomes: 
            minimize: rank(R)+||D||1                                        (8) 
               subject to: DRS +=   
Obviously, Eq. (8) is the popular form of matrix low rank 
decomposition, we can simply apply the RPCA algorithm [9] 
to solve it. Finally, we sum up all the elements in each 
column of D to produce the anomaly mapping image for 
detection with a threshold.   

Compared to the unmixing approaches, the advantage 
of the proposed approach is that we can discriminate which 
components is the anomaly, and still hold the advantage of 
the unmixing technique, i.e., preserve the percentage of 
anomaly in each pixel.  
 

4. EXPERIMENTAL RESULTS 
 
4.1. Data Sets 
To evaluate the performance, the proposed approach is 
applied onto three datasets. The first one is a synthetic 
hyperspectral data, where 49 dots are manually added to the 



94-band image data of spatial size 150×103. The 49 dots 
are with different anomaly percentage varying from 5% to 
100%. The second dataset is the air force (AF) image with 4 
aluminum panels (Black, Green, Tan, and Silver), 
representing the anomaly in the scene. The dimension of the 
AF image is 267 × 342 × 124. The third dataset is the 
Mastcam sol183 dataset from both the right and left camera 
after calibration which has a dimension of 598×670×12. 
The images of the three data sets are shown in Figure 1.  

In experiments, we apply the MVCNMF first, with the 
predefined number of source components c being a large 
value, so that the source components can be well separated. 
Then, we apply the second step for anomaly components 
extraction.  
 

   
      Left: dataset 1;               Right: dataset 2, AF image 

 
Data set 3: mastcam sol183 

Figure 1. Sample spectral images of the three data sets. 
 
4.2. Results Analysis  
The anomaly detection results on dataset 1 are shown in 
Figure 2. 15 source components are extracted in the first 
unmixing step, however, it is difficult to discriminate which 
component is anomaly to others, which forms multi-modular 
of the background. From the results of the second step, we 
can find the components of the dot targets and the thin line 
in the middle of the image that are both detected. Although 
the dot targets are the synthetic anomaly, the thin lines also 
have the two properties of anomaly in this image, therefore 
both two components are selected as anomaly components 
in the results.  

The detection results on dataset 2 are shown in Figure 3. 
The number of source components is also defined as 15. 
From the 15 components, it is difficult to select which 

components are anomaly. Especially when the 4 targets 
have different characteristics, and they appear in different 
source components. However, in the detection results, we 
again successfully identified the anomaly components, 
which perfectly align with the four targets from different 
sources.  
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(a) extracted components in step 1.  

 
(b) identified anomaly components  
Figure 2. Results on data set 1.  

The detection results on data set 3 are shown in Figure 
4. 9 source components are extracted in the first step, and 
the identified anomaly components seem to correctly reflect 
the characteristic of the hydration materials, which mostly 
appears in the drilled hole and the cracks of the soil surface. 
A reference image is also shown in Figure 4(c), provided by 
NASA, although it is from another data set.  

 
5. CONCLUSION  

 
In this work, we presented an approach that combines 
source component extraction by unmixing and anomaly 
components identification by volume and sparsity constraint. 



The anomaly has been interpreted as saliency and converted 
to be a low-rank matrix decomposition problem. The 
experimental results showed that we are potentially able to 
identify anomaly components with good performance.  

The future work will be to compare our approach to 
other existing techniques with quantitative evaluation, such 
as the local/global RX algorithm [2,3], sparse representation 
based algorithm [10], and subspace based algorithms [11].  
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(a) extracted components in step 1. 

 
(b) identified anomaly components 
Figure 3. Results on data set 2.  
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(a) extracted components in step 1. 

 
(b) identified anomaly components  
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