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A Douglas–Rachford Splitting Approach to
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Abstract— In this paper, we study the compressed sensing (CS)1

image recovery problem. The traditional method divides2

the image into blocks and treats each block as an indepen-3

dent sub-CS recovery task. This often results in losing global4

structure of an image. In order to improve the CS recovery5

result, we propose a nonlocal (NL) estimation step after the6

initial CS recovery for denoising purpose. The NL estimation7

is based on the well-known NL means filtering that takes an8

advantage of self-similarity in images. We formulate the NL9

estimation as the low-rank matrix approximation problem, where10

the low-rank matrix is formed by the NL similarity patches.11

An efficient algorithm, nonlocal Douglas–Rachford (NLDR),12

based on Douglas–Rachford splitting is developed to solve this13

low-rank optimization problem constrained by the CS mea-14

surements. Experimental results demonstrate that the proposed15

NLDR algorithm achieves significant performance improvements16

over the state-of-the-art in CS image recovery.17

Index Terms— Compressed sensing, image recovery, nonlocal18

filtering, Douglas-Rachford splitting, low-rank estimation.19

I. INTRODUCTION20

COMPRESSED Sensing (CS) has drawn quite some21

attention as a joint sampling and compression22

approach [1], [2]. It states that under certain conditions,23

signals of interest can be sampled at a rate much lower than24

the Nyquist rate while still enabling exact reconstruction of the25

original signal. CS-based approach has an attractive advantage26

that the encoding process is made signal-independent27

and computationally inexpensive at the cost of high28

decoding/recovery complexity. Usually, the CS measurement29

is acquired through projecting the raw signals on to a30

pre-defined random sampling operator. Thus, CS is especially31

desirable in some image processing applications when the data32

acquisition devices must be simple (e.g., inexpensive resource-33

deprived sensors), or when oversampling can harm the object34

being captured (e.g., X-ray imaging) [3], among which the35

compressive sensing Magnetic Resonance Imaging (CS-MRI)
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36

is most promising as it significantly reduces the acquisition37
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time of MRI scanning. When applied to 2D images, CS faces 38

several challenges including a computationally expensive 39

reconstruction process and huge memory required to store the 40

random sampling operator [4]. Several fast algorithms have 41

been developed for CS reconstruction [4]–[6]. The memory 42

challenge was first addressed in [7] using a block-based 43

sampling operation, which later on became the most common 44

method in CS image recovery. 45

Block-based compressed sensing (BCS) has made the 46

CS image recovery practical since it reduces the recovery 47

cost, where image acquisition is conducted in a block-by- 48

block manner through the same compressed sensing (CS) 49

measurement operator. However, manually dividing the image 50

into blocks and treating each image block as an independent 51

sub-CS recovery task would inevitably lose some global 52

properties of the image. Thus it would often require some 53

filtering technique (i.e., Wiener filter [4]) to generate good 54

visual recovery result. Nonetheless, the recovered image still 55

suffers a low PSNR. Aside from BCS, another class of popular 56

methods is based on the total variation (TV) model [5], [8], 57

which exploits the prior knowledge that a natural image is 58

sparse in the gradient domain. TV based algorithms often 59

suffer from undesirable staircase artifacts and tend to over- 60

smooth image details and textures [9]. 61

In this paper, we propose NLDR, a CS image recovery 62

algorithm based on the BCS scheme. We overcome the 63

aforementioned BCS problems by introducing a new nonlocal 64

estimation step after the initial CS reconstruction to further 65

remove noise. The nonlocal estimation process is built on the 66

well-known nonlocal means (NL) filtering that takes advan- 67

tage of self-similarities in images, which preserves certain 68

global structure. We formulate the nonlocal estimation into the 69

low-rank approximation problem where the low-rank matrix 70

is formed by the nonlocal similarity patches. Furthermore, 71

by using a deterministic annealing (DA) approach, we incor- 72

porate the CS measurement constraint into the low-rank 73

optimization problem. We propose an efficient algorithm 74

based on Douglas-Rachford splitting (DR) to solve the 75

low-rank matrix approximation problem combined with the 76

CS measurement constraints, the solution to which is the final 77

CS recovery output. The proposed NLDR algorithm effectively 78

reduces the staircase artifacts that introduced in BCS and TV 79

by utilizing the nonlocal similarity patches while prevent- 80

ing over-smoothness by recursively incorporating the initial 81

CS measurement constraint. 82
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The rest of the paper is organized as follows. Section II83

provides a brief review of the CS image recovery problem84

as well as some related works. Section III discusses the85

nonlocal estimation and Douglas-Rachford Splitting method.86

We conduct experiments in Section IV on both standard test87

images and MRI images. Section V concludes the paper.88

II. BACKGROUND AND RELATED WORKS89

A. CS Image Recovery Problem90

Mathematically, the sparse representation model assumes91

that a signal x ∈ Rn can be represented as x = �α, where92

� ∈ Rn×n is a sparsifying basis or dictionary, and most93

entries of the coding vector α are zero or close to zero. This94

sparse decomposition of x can be obtained by solving a relaxed95

convex �1-minimization problem in the following Lagrangian96

form:97

min
α

{‖x − �α‖2
2 + λα‖α‖1}, (1)98

where constant λα denotes the regularization parameter.99

In CS image recovery, we consider an image I ∈ R
√

n×√
n .100

By representing the image I in vector format, denoted as101

x , what we observe is the projected measurement y via102

y = �x + ν, where � ∈ Rm×n(m < n) is the measure-103

ment operator and ν is the additive noise vector. To recover104

x from y, first y is sparsely coded with respect to the basis105

� by solving the following minimization problem106

α̂ = arg min
α

{‖y − ��α‖2
2 + λα‖α‖1} (2)107

and then x is reconstructed by x̂ = �α̂.108

This can be easily extended to the block-based scenario, as109

stated in [10]. Let xi = Ri x denote an image patch extracted110

at location i , where Ri is the matrix extracting patch xi from x111

at pixel location i . Given a basis � , each patch can be sparse112

represented and solved by Eq. (1). Then the entire image x113

can be represented by the set of sparse code using {�αi }. The114

patches can be overlapped to suppress the boundary artifacts.115

Similarly, in order to reconstruct the image x from the116

measurement y, we can adopt the same block-based CS117

recovery by solving αi from Eq. (2). The whole image x is118

then reconstructed as x̂ = �α̂ = (
∑N

i RT
i Ri )

−1 ∑N
i (RT

i �α̂i )119

as proved in [10].120

The Iterative soft thresholding (IST) algorithm [11] can121

be very efficient in solving the problem in Eq. (2). In the122

(k + 1)-th iteration, the solution is given by α(k+1) =123

Sτ (α
(k) + �∗y − �∗��α(k)), where Sτ (·) is the classic soft-124

thresholding operator [11]. In this paper, we use a slightly125

modified IST algorithm [12], where the solution in each126

iteration is called the projected Landweber iteration with the127

adaptive descent parameter β(k) > 0,128

α(k+1) = PR[α(k) + β(k)�∗(y − ��α(k))], (3)129

where PR is the �2 projection of α on the �1 ball with130

radius R. The adaptive descent parameter β(k) can be selected131

using the greedy strategy as follows,132

133

β(k) = ‖�∗(y − ��α(k))‖2
2

‖��∗(y − ��α(k))‖2
2

(4)134

This is an accelerated version of IST that converges faster than 135

the original IST. Readers may refer to [12] for details. 136

B. Other Related Works 137

Buades et al. introduced in [13] the nonlocal 138

means (NLM) filtering approach to image denoising, 139

where the self-similarities between rectangular patches are 140

used as a prior on natural images. The idea of nonlocal 141

means has recently received much attention in image 142

processing [14]–[19]. For example, Peyré et al. [14] 143

proposed to use the Total Variation (TV) prior and nonlocal 144

graph to solve the inverse problem with application in CS. 145

The same idea was also adopted in Yang and Jacob [15]. 146

Zhang et al. [16] proposed TVNLR which improves the 147

conventional TV approach by adding a nonlocal regularization 148

to the CS recovery problem and solved the problem using 149

the Augmented Lagrangian Method (ALM). Shu et al. 150

proposed the NLCS algorithm [17] and tried to group similar 151

patches through NLS (nonlocal sparsity) regularization. 152

The authors in [19] proposed a nonlocal total variation 153

structure tensor (ST-NLTV) regularization approach for 154

multicomponent image recovery from degraded observations, 155

leading to significant improvements in terms of convergence 156

speed over state-of-the-art methods such as the Alternating 157

Direction Method of Multipliers (ADMM). Dong et al. 158

proposed the nonlocal low-rank regularization (NLR-CS) 159

method [18] which explored the structured sparsity of the 160

image patches for compressed sensing. In order to explore the 161

low-rank structure of the image patches, a smooth but non- 162

convex surrogate function for the rank estimation is adopted 163

as objective function. Zhang et al. proposed nonlocal TV 164

regularization (NLVT) [20] for CS image recovery. NLTV is 165

based on the Bregman iteration [21], namely Bregmanized 166

Operator splitting (BOS). 167

In this paper, we adopt the nonlocal means filtering idea and 168

introduce a new nonlocal estimation step after the initial CS 169

reconstruction to further remove noise. It differs from [14] 170

as we use the �1-norm based sparsity of the image and 171

result in solving a convex optimization problem using the 172

projection method. In [14] the nonlocal graph is similar to 173

the nonlocal weights between patches as used in our paper. 174

The main difference is that the author further imposed that 175

these weights correspond to a probability distribution and that 176

the graph only connects pixels that are not too far away. 177

While in [15], the nonlocal weights may be improved using 178

a different distance metric (i.e., robust distance metric) to 179

promote the averaging of similar patches while minimizing 180

the averaging of dissimilar patches. In this paper, we only 181

aim to find similar patches to form low-rank matrix and thus 182

differ from these methods. In [18] instead of using the nuclear 183

norm for low-rank approximation, the authors proposed to use 184

non-convex surrogate function and subsequently solved the 185

optimization problem via ADMM. 186

In [17], two non-local sparsity measures, i.e., non-local 187

wavelet sparsity and non-local joint sparsity, were proposed 188

to exploit the patch correlation in NLCS. It then combines 189

with the conventional TV measure to form the optimization 190
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objective function and use the ADMM method to solve the191

CS recovery problem. It differs from our algorithm in that192

their search for similar patches is incorporated in the objective193

function while NLDR directly adopts the nonlocal means194

filtering approach to find the similar patches and then conducts195

low-rank approximation. After getting the non-local low-rank196

estimation, we further incorporate the initial CS measurement197

constraint into the low-rank optimization problem, using a198

deterministic annealing (DA) approach to further improve199

the recovery result. Additionally, compared to the traditional200

ADMM method, we propose to use Douglas-Rachford split-201

ting method to effectively solve the combined optimization202

problem.203

In [22], Candès and Tao proposed to solve the matrix204

completion problem using low-rank regularization through205

convex optimization. Later in [23] Dong et al. first combined206

the nonlocal image representation and low-rank approach for207

image restoration and achived state-of-the-art performance in208

image denosing. Ji et al. [24] also incorporated the low-rank209

matrix completion in video denoising.210

To summarize, the main contribution of this paper is three-211

fold: First, we propose to incorporate the nonlocal similarity212

patches searching step after the initial CS image recovery213

task. By searching and incorporating the nonlocal similarity214

patches the traditional block based CS recovery artifacts could215

be resolved. Second, we propose to estimate the grouped216

similarity patches matrix as a low-rank matrix completion217

problem, referred as nonlocal low-rank estimation. The idea218

is that, by searching the nonlocal similarity patches we could219

resolve the block and staircase artifacts, while using low-rank220

estimation we can further denoise the grouped similarity221

patches. Third, we incorporate the initial CS measurement222

constraint into the low-rank estimation optimization223

problem. By using a deterministic annealing (DA) approach,224

the Douglas-Rachford splitting effectively solves the225

reformulated optimization problem.226

III. NONLOCAL LOW-RANK REGULARIZATION AND227

DOUGLAS-RACHFORD SPLITTING228

In this section, we present the idea of nonlocal low-rank229

regularization, followed by the proposed Douglas-Rachford230

splitting method. We refer to the algorithm as the Nonlocal231

Douglas-Rachford splitting (NLDR) algorithm.232

A. Nonlocal Low-Rank Regularization for CS Image233

An example to illustrate the nonlocal estimation step is234

shown in Fig. 1. The Lena image in the first row is obtained235

from the IST CS recovery algorithm. Then the nonlocal similar236

patches are searched across the entire image. We denote the237

nonlocal similar patches of xi as xi,1, xi,2, xi,3, · · · xi,q . These238

extracted patches then form the matrix Bi where the low-rank239

approximation is conducted to yield the resulting denoised240

patch matrix, as shown in the second row. We apply patch241

reweight to obtain the estimated patch xe to update the original242

patch xi . After iterating over the entire image, the much243

cleaner Lena image is shown leftmost in the second row.244

Fig. 1. An illustration of nonlocal estimation and similar patches denoising
using low-rank matrix approximation.

1) Nonlocal Similarity Patches: The basic idea of 245

nonlocal (NL) means filtering is simple. For a given pixel 246

ui in an image x , its NL filtered new intensity value, denoted 247

by NL(ui ), is obtained as a weighted average of its neighbor- 248

hood pixels within a search window of size w. 249

In our work, we extend the pixel-wise nonlocal filtering 250

to the patch-based filtering. Specifically, we search for the 251

nonlocal similar “patches” xi, j , j = 1, 2, · · · , q , to the given 252

patch xi in a large window of size w centered at pixel ui . 253

Here, q is the total number of similar patches to be selected. 254

The weight of patch xi, j to xi , denoted as ωi j , is then 255

computed by 256

ωi j = 1

ci
exp(

−‖xi − xi, j ‖2
2

h2 ), j = 1, · · · , q (5) 257

where h is a pre-determined scalar and ci is the normalization 258

factor. Accordingly, for each patch xi , we have a set of its 259

similar patches, denoted by �i . Then the nonlocal estimates 260

of each patch x̂i can be computed as x̂i = ∑
j∈�i

ωi j xi, j . 261

Further, this can be written in a matrix form as 262

x̂nl
.= W

p∑

i=1

x̂i , W(i, j) =
{

ωi j , if x j ∈ �i

0, otherwise.
(6) 263

where p denotes the number of all patches in the entire image 264

and x̂nl is the nonlocal estimated image output. 265

2) Patch Denoising by Low-Rank Approximation: Although 266

we can use Eq. (6) to remove noise in the IST recovered 267

image x̂ to a certain degree, this is based on a weighted 268

average of patches in x̂ , which are inherently noisy. Thus, it 269

is imperative to apply some denoising techniques before the 270

nonlocal similarity patch reweight using Eq. (6) to prevent 271

the noise from accumulating. By rewriting the nonlocal 272

similarity patches into the matrix format, we have 273

Bi = [xi,1; xi,2; , · · · ; xi,q ], where each column of Bi is a 274

vector representation of xi, j , j = 1, 2, · · · , q for patch xi . 275

Since all columns of Bi share similarity with patch xi , 276

the columns of Bi should bear a high degree of similarity 277

between each other. In other words, we can safely treat Bi 278

as a low-rank matrix. We thus formulate the nonlocal patch 279

denoising problem into the low-rank matrix approximation 280
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problem [22] as follows,281

min
B̂i

1

2
‖Bi − B̂i‖2

2 + λBi ‖B̂i‖∗, (7)282

where ‖B̂i‖∗ is the nuclear norm of the low-rank approximated283

patch matrix B̂i , defined by ‖B̂i‖∗ � trace(

√

B̂i
T

B̂i ) =284
∑q

r=1 σr , and σr ’s are the singular values of B̂i .285

In addition, since the columns of Bi (or the patches) are286

also a subset of the reconstructed image from IST recovery287

algorithm, it should be subject to the CS measurement con-288

straint y = �x . Therefore, multiplying Eq. (7) with W, we289

reformulate the denoising problem of Eq. (7) into290

min
x

1

2
‖x − WBi‖2

2 + λx‖x‖∗ s.t. y = �x . (8)291

In what follows, we discuss in sec. III-B how to solve292

Eq. (8) with the CS measurement constraint using the method293

referred to as the Douglas-Rachford splitting method.294

B. Douglas-Rachford Splitting295

The Douglas-Rachford splitting method was originally pro-296

posed in [25] for solving matrix equations. Later on it was297

advanced as an iterative scheme to minimize the functions of298

the form,299

min
x

F(x) + G(x) (9)300

where both F and G are convex functions for which one is301

able to compute the proximal mappings proxγ F and proxγ G302

which are defined as303

proxγ F (x) = arg min
y

1

2
‖x − y‖2

2 + γ F(y) (10)304

The same definition applies to proxγ G [26]. In order to solve305

Eq. (8), we have F(x) = ιC(x) and G(x) = ‖x‖∗, where306

C = {x : y = �x} and ιC is the indicator function.307

Given that F(x) = ιC(x), the solution to Eq. (10) is the308

same as projections onto convex sets (POCS), and does not309

depend on γ. Therefore, we have310

proxγ ιC F (x) = proxιC F (x) = x + �+(y − �x), (11)311

where �+ = �T (��T )−1 is the pseudoinverse of �. The312

proximal operator of G(x) is the soft thresholding of the313

singular values314

proxγ G(x) = U(x) · ρλx (S(x)) · V (x)∗ (12)315

where x = U ·S ·V ∗ is the singular value decomposition of the316

matrix x and S = diag(si )i is the diagonal matrix of singular317

values si , and ρλx (S) is defined as a diagonal operator.318

ρλ(S) = diag(max(0, 1 − λx/|si |)si )i (13)319

We can then solve the problem in Eq. (7) using the320

Douglas-Rachford iterations given by321

x̃k+1 = (1 − μ

2
)x̃k + μ

2
rproxγ G(rproxγ F (x̃k)) (14)322

and the (k + 1)-th solution x̂k+1 is calculated by323

x̂k+1 = proxγ F (x̃k+1). Here the reversed-proximal mappings324

Algorithm 1 Nonlocal Douglas-Rachford Splitting (NLDR)
Algorithm

is given by rproxγ F = 2proxγ F −x for F(x) and in the similar 325

fashion to G(x).. The parameters are selected as λx > 0 and 326

0 < μ < 2 which guarantee x̂ to be a solution that minimizes 327

F(x) + G(x) based on the proof in [27]. 328

C. The NLDR Algorithm 329

Algorithm 1 provides a pseudo-code for the proposed 330

Nonlocal Douglas-Rachford splitting (NLDR) algorithm. 331

Given the observation y (i.e., compressed measurements), the 332

NLDR algorithm first outputs an intermediate reconstruction 333

result x̂ I ST through the IST algorithm. This soft-thresholding 334

output is then used to calculate the nonlocal estimated image 335

x̂nl , which is used to initialize the low-rank optimization 336

problem in Eq. (7) where the Douglas-Rachford splitting 337

method will be carried out iteratively based on Eq. (14). 338

As for calculating the nonlocal estimates of the image, 339

the NLDR algorithm obtains the averaged result based on 340

J nonlocal estimation iterations. For the IST algorithm, we 341

empirically set the penalty parameter λα = 1.8 and soft- 342

thresholding parameter τ = 1.2, respectively. 343

IV. EXPERIMENTS 344

In this section, we evaluate the NLDR algorithm for 345

CS image reconstruction where both standard test images and 346

MRI images are used. The reason for choosing MRI images 347

for evaluation purpose is due to the significant impact of CS 348

on the clinical practice of MRI, where long acquisition time 349
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TABLE I

PSNR PERFORMANCE IN dB

has been one of the primary obstacles. We implement the350

algorithm using Matlab 2013b on a 2.20GHz laptop computer.351

BCS-SPL [4] is a block-based CS image recovery352

method solved using a smoothed version of projected353

Landweber (SPL) algorithm. The smoothing process is done354

by the Wiener filter. We further compare our result with355

one of the state-of-the-art algorithms for image CS recovery,356

known as TVAL3 [6]. TVAL3 tries to minimize the image357

total variation norm using augmented lagrangian and alternat-358

ing direction algorithms. Several TV-based methods are also359

compared. The TV benchmark method denoted as TV which360

is implemented based on [28], TVNLR [29] and NLTV [20].361

We also compare NLDR performance with other nonlocal362

based approaches, e.g., NLCS [17] and NLR-CS [18]. Finally,363

to evaluate the potential of NLDR as a standalone denoising364

method, we compare its performance with the state-of-the-art365

BM3D [30] method for noise removal purpose.366

A. CS Recovery on Standard Image Dataset367

We present the experimental results for noiseless CS mea-368

surements and then report the results using noisy CS measure-369

ments.370

Fig. 2. CS recovery results on Lena image with 10% measurements at
iteration j .

1) Noiseless Recovery: We first test the NLDR algorithm 371

in noiseless settings using standard test images of size 372

512 × 512. The block-based image patch is of size 6 × 6.

AQ:2

373

We set the number of similar patches q in the nonlocal 374
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Fig. 3. CS Reconstructed image Barbara with 30% measurement ratio. (a) Original image; (b) proposed NLDR recovery, PSNR = 37.30dB;
(c) BCS-SPL recovery [4], PSNR = 25.92dB; (d) TVAL3 recovery [6], PSNR = 24.79dB; (e) TVNLR recovery [29], PSNR = 25.35dB. (f) NLCS
recovery [17], PSNR = 31.65dB; (g) NLR-CS recovery [18], PSNR = 34.26dB; (h) NLTV recovery [20], PSNR = 31.79dB.

Fig. 4. Boat image with cropped character patch using 20% measurements. (a) proposed NLDR recovery, PSNR = 32.48dB; (b) NLCS recovery [17],
PSNR = 30.66dB; (c) TVNLR recovery [29], PSNR = 28.02dB; (d) NLR-CS recovery [18], PSNR = 29.07dB; (e) NLTV recovery [20], PSNR = 27.97dB.

Fig. 5. Part of Lena image with 200% magnification using 20% measurements. (a) Original image; (b) reconstruction using proposed NLDR with IST,
PSNR = 36.33dB; (c) TVAL3 + NLDR, PSNR = 36.35dB (d) BCS-SPL + NLDR, PSNR = 36.35dB.

estimation step as 45. We use the scrambled Fourier matrix as375

the CS measurement operator � and DCT matrix as the basis376

� to represent the original image in the initial IST recovery.377

The parameters are selected as μ = 1 for DR iteration and378

λx = ci
max(si )

for each iteration where ci = C0 ∗ ε, 0 < ε < 1379

and C0 is a constant. For the number of iterations in the380

outerloop, we find that the recovery result gradually converges 381

when J reaches 12 for all the image datasets. Fig. 2 shows 382

one example on Lena image using 10% of measurements. Note 383

that at iteration 0, we use the initial I ST recovery result. 384

Table I compares PSNR with different measurement ratios 385

(i.e., m
n ). We see that the NLDR algorithm considerably 386
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TABLE II

CS NOISY RECOVERY RESULTS ON STANDARD TEST IMAGES WITH 20% MEASUREMENTS

outperforms the other methods in all the cases, with387

PSNR improvements of up to 11.38dB and 13.68dB,388

as compared with BCS-SPL and TVAL3, respectively.389

Furthermore, the average PSNR gain by NLDR over BCS-SPL390

is 6.18dB and 5.17dB over TVAL3. For the other nonlocal391

based methods, we see that NLDR also outperforms them,392

with average PSNR gain over NLCS by 2.19dB, 5.41dB over393

TVNLR, 2.79Db over NLR-CS and 4.28dB over NLTV.394

Since originally NLDR is calculated on top of the395

IST recovery algorithm with an extra nonlocal estimation396

step, in order to perform a fair comparison among the397

BCS-SPL and TVAL3 algorithms, we use the result image398

from BCS-SPL and TVAL3 algorithm as the input to the399

NLDR algorithm. By doing this, we would be able to 400

quantify how much improvement NLDR has gained. Also, 401

since the initial image from IST output is noisy, we further 402

apply the state-of-the-art denoising algorithm - BM3D on top 403

of the IST recovery result to denoise the result image in order 404

to compare with the NLDR result. 405

In Table I, the column TVAL3+NLDR denotes 406

applying NLDR on the TVAL3 resulting image, the column 407

BCS-SPL+NLDR denotes NLDR applied on top of the 408

BCS-SPL output, and IST+BM3D denotes BM3D applied 409

on top of the IST output. Note, we also generate the sole 410

IST algorithm output in the first column. From the table, 411

we can see that the columns correspond to TVAL3+NLDR, 412
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BCS-SPL+NLDR and NLDR yield similar PSNR. This413

result indicates the generalization capability of NLDR, that it414

actually gives the best available denoised recovery result no415

matter what the initial input is. That is, NLDR has the great416

potential of serving as a stand-alone denoising algorithm.417

Some visual results of CS reconstructed image Barbara with418

30% measurement ratio are presented in Fig. 3. Obviously,419

NLDR generates much better visual quality than those420

from BCS-SPL and TVAL3, where both BCS-SPL and421

TVAL3 have blurred artifacts. When compared using Table I,422

we see NLDR outperforms the other two algorithms largely423

in PSNR. The reason is that the image Barbara itself has a424

lot of texture patterns (i.e., nonlocal similar patches), which425

had been successfully exploited in the NLDR algorithm.426

Fig. 4 demonstrates the Boat image with cropped character427

patch using 20% measurements. Also, we show in Fig. 5 the428

result of original NLDR using IST as well as TVAL3+NLDR429

and BCS-SPL+NLDR. They all have similar visual results430

as compared to the original image. This is consistent to the431

observation made based on Table I that their recovery PSNRs432

are very close.433

2) Noisy Recovery: In this experiment, the robustness of434

the NLDR algorithm to noise is demonstrated. In practice,435

CS measurements consist mostly of linear operations, thus436

the Gaussian noise corrupting the signal during the signal437

acquisition is approximated as the Gaussian noise corrupt-438

ing the compressed measurement vector. In our experiments,439

we simply corrupt the compressed measurement vec-440

tor by different levels of Gaussian noise measured by441

Signal-to-Noise Ratios (SNRs). We use all seven standard test442

images and add different SNRs (5, 10, 15, 25, 35) to their 20%443

CS measurements and report the PSNR values of the final444

CS recovered image in Table II.445

From Table II, we see that by adding 5dB of Gaussian446

noise on the CS measurements, all the TV-based algorithms’447

(i.e., TV, NLTV, TVAL3 and TVNLR) recovery performance448

suffer in terms of PSNR as compared with their original449

noiseless recovery settings. When the noise SNR reaches 35,450

the recovery result is close to its noiseless case. It also451

demonstrates that the recovery performance degrades on both452

BCS-SPL and NLCS when noise is added while NLDR is453

affected much less by the noise in all SNR cases. We see454

that the NLR-CS algorithm is also robust on noise with only455

less than 1dB PSNR decrease as compared with its noiseless456

settings for all the testing images. For BM3D, as a denoising457

algorithm, we see that the recovery result is not affected458

much with different noise dB levels. However, NLDR still459

outperforms NLR-CS and BM3D in the noisy CS recovery460

case.461

B. Recovery Performance on MRI Data462

In this experiment, the performance of the proposed463

NLDR algorithm is demonstrated on the real MRI Brain464

image data with a variety of undersampling factors. The image465

used is in vivo MR scans of size 512 × 512 from [31]. The466

CS data acquisition is simulated by downsampling the467

2D discrete Fourier transform of the Brain image. Our result is468

Fig. 6. Axial T2 Weighted Brain image CS recovery using 4 fold down-
sampling (25% measurements). (a) Original image; (b) reconstruction using
SparseMRI, PSNR = 31.84dB; (c) DLMRI, PSNR = 34.75dB; (d) NLDR
(IST), PSNR = 34.86dB.

compared with a leading CS MRI method by Lustig et al. [3] 469

(denoted as SparseMRI) and the dictionary learning based 470

recovery algorithm called DLMRI [32]. The SparseMRI 471

method is to minimize both the l1 norm and the TV norm 472

of the image in the wavelet domain. The DLMRI uses 473

K-SVD dictionary learning methods and tries to find the 474

best sparse representation of the image for CS recovery. 475

We adopt the same 2D random sampling scheme as in [32] 476

with 2.5, 4, 6, 8, 10, 20 fold downsampling. Here, for the 477

k fold downsampling, it is equivalent to the measurement ratio 478

(i.e., m
n ) of 1

k . 479

In Fig. 6, we present the CS recovery result on the Brain 480

image with 4 fold downsampling. We observe that NLDR 481

(based on IST) gives the best recovery result in PSNR which 482

is 34.86dB. The DLMRI method also has a close PSNR of 483

34.75dB. We also demonstrate in Fig. 7 the comparison with 484

various downsampling factors. When the downsampling factor 485

is within 10 fold, the NLDR performance is comparable to 486

that of the DLMRI method, while the SparseMRI generates 487

much lower recovery PSNRs. When the downsampling factor 488

reaches 20, the reconstructed image PSNR drops drastically 489

for SparseMRI, and the NLDR is 1.15dB less than DLMRI 490

PSNR. The reason that DLMRI performs better than NLDR 491

is that, DLMRI uses dictionary learning to find the best 492

sparse representation basis for each single test image. NLDR 493

naturally utilizes a general DCT basis to represent the original 494

test image. As a universal basis, it is not chosen to be 495

optimal for one image. The DLMRI also has its disadvantages- 496

the recovery time usually lasts for hours for a large image 497
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Fig. 7. CS recovery results comparison with various downsampling factors.

as the dictionary learning takes a lot of computations.498

The computation time needed for NLDR is at the same level499

as those of TVAL3 and BCS-SPL. For all our test images of500

size 512 ×512, NLDR takes, on average, about 10 minutes to501

finish on a Laptop PC.502

V. CONCLUSION503

This paper presented a CS image recovery algorithm based504

on Douglas-Rachford Splitting with nonlocal estimation. The505

proposed NLDR algorithm first used the iterative thesholding506

algorithm to obtain the intermediate image reconstruction507

result. Then a nonlocal estimation step was applied to the508

reconstructed image to improve the recovery performance.509

In the nonlocal estimation step, we reformulated the patches510

estimation as patch denoising problem using low-rank matrix511

approximation. We proposed a Douglas-Rachford splitting512

method to solve the CS recovery problem with the non-513

local estimation. Experimental results validated the perfor-514

mance of the proposed NLDR algorithm in both PSNR and515

visual perception on standard test images with both noiseless516

and noisy settings. NLDR outperformed the state-of-the-art517

CS recovery algorithms and showed it can be applied on top518

of existing recovery algorithms to further improve the recovery519

performance. Experiments on MRI data also demonstrated it520

is practical for real applications with competing results.521
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A Douglas–Rachford Splitting Approach to
Compressed Sensing Image Recovery

Using Low-Rank Regularization
Shuangjiang Li, Student Member, IEEE, and Hairong Qi, Senior Member, IEEE

Abstract— In this paper, we study the compressed sensing (CS)1

image recovery problem. The traditional method divides2

the image into blocks and treats each block as an indepen-3

dent sub-CS recovery task. This often results in losing global4

structure of an image. In order to improve the CS recovery5

result, we propose a nonlocal (NL) estimation step after the6

initial CS recovery for denoising purpose. The NL estimation7

is based on the well-known NL means filtering that takes an8

advantage of self-similarity in images. We formulate the NL9

estimation as the low-rank matrix approximation problem, where10

the low-rank matrix is formed by the NL similarity patches.11

An efficient algorithm, nonlocal Douglas–Rachford (NLDR),12

based on Douglas–Rachford splitting is developed to solve this13

low-rank optimization problem constrained by the CS mea-14

surements. Experimental results demonstrate that the proposed15

NLDR algorithm achieves significant performance improvements16

over the state-of-the-art in CS image recovery.17

Index Terms— Compressed sensing, image recovery, nonlocal18

filtering, Douglas-Rachford splitting, low-rank estimation.19

I. INTRODUCTION20

COMPRESSED Sensing (CS) has drawn quite some21

attention as a joint sampling and compression22

approach [1], [2]. It states that under certain conditions,23

signals of interest can be sampled at a rate much lower than24

the Nyquist rate while still enabling exact reconstruction of the25

original signal. CS-based approach has an attractive advantage26

that the encoding process is made signal-independent27

and computationally inexpensive at the cost of high28

decoding/recovery complexity. Usually, the CS measurement29

is acquired through projecting the raw signals on to a30

pre-defined random sampling operator. Thus, CS is especially31

desirable in some image processing applications when the data32

acquisition devices must be simple (e.g., inexpensive resource-33

deprived sensors), or when oversampling can harm the object34

being captured (e.g., X-ray imaging) [3], among which the35

compressive sensing Magnetic Resonance Imaging (CS-MRI)

AQ:1

36

is most promising as it significantly reduces the acquisition37
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time of MRI scanning. When applied to 2D images, CS faces 38

several challenges including a computationally expensive 39

reconstruction process and huge memory required to store the 40

random sampling operator [4]. Several fast algorithms have 41

been developed for CS reconstruction [4]–[6]. The memory 42

challenge was first addressed in [7] using a block-based 43

sampling operation, which later on became the most common 44

method in CS image recovery. 45

Block-based compressed sensing (BCS) has made the 46

CS image recovery practical since it reduces the recovery 47

cost, where image acquisition is conducted in a block-by- 48

block manner through the same compressed sensing (CS) 49

measurement operator. However, manually dividing the image 50

into blocks and treating each image block as an independent 51

sub-CS recovery task would inevitably lose some global 52

properties of the image. Thus it would often require some 53

filtering technique (i.e., Wiener filter [4]) to generate good 54

visual recovery result. Nonetheless, the recovered image still 55

suffers a low PSNR. Aside from BCS, another class of popular 56

methods is based on the total variation (TV) model [5], [8], 57

which exploits the prior knowledge that a natural image is 58

sparse in the gradient domain. TV based algorithms often 59

suffer from undesirable staircase artifacts and tend to over- 60

smooth image details and textures [9]. 61

In this paper, we propose NLDR, a CS image recovery 62

algorithm based on the BCS scheme. We overcome the 63

aforementioned BCS problems by introducing a new nonlocal 64

estimation step after the initial CS reconstruction to further 65

remove noise. The nonlocal estimation process is built on the 66

well-known nonlocal means (NL) filtering that takes advan- 67

tage of self-similarities in images, which preserves certain 68

global structure. We formulate the nonlocal estimation into the 69

low-rank approximation problem where the low-rank matrix 70

is formed by the nonlocal similarity patches. Furthermore, 71

by using a deterministic annealing (DA) approach, we incor- 72

porate the CS measurement constraint into the low-rank 73

optimization problem. We propose an efficient algorithm 74

based on Douglas-Rachford splitting (DR) to solve the 75

low-rank matrix approximation problem combined with the 76

CS measurement constraints, the solution to which is the final 77

CS recovery output. The proposed NLDR algorithm effectively 78

reduces the staircase artifacts that introduced in BCS and TV 79

by utilizing the nonlocal similarity patches while prevent- 80

ing over-smoothness by recursively incorporating the initial 81

CS measurement constraint. 82

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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The rest of the paper is organized as follows. Section II83

provides a brief review of the CS image recovery problem84

as well as some related works. Section III discusses the85

nonlocal estimation and Douglas-Rachford Splitting method.86

We conduct experiments in Section IV on both standard test87

images and MRI images. Section V concludes the paper.88

II. BACKGROUND AND RELATED WORKS89

A. CS Image Recovery Problem90

Mathematically, the sparse representation model assumes91

that a signal x ∈ Rn can be represented as x = �α, where92

� ∈ Rn×n is a sparsifying basis or dictionary, and most93

entries of the coding vector α are zero or close to zero. This94

sparse decomposition of x can be obtained by solving a relaxed95

convex �1-minimization problem in the following Lagrangian96

form:97

min
α

{‖x − �α‖2
2 + λα‖α‖1}, (1)98

where constant λα denotes the regularization parameter.99

In CS image recovery, we consider an image I ∈ R
√

n×√
n .100

By representing the image I in vector format, denoted as101

x , what we observe is the projected measurement y via102

y = �x + ν, where � ∈ Rm×n(m < n) is the measure-103

ment operator and ν is the additive noise vector. To recover104

x from y, first y is sparsely coded with respect to the basis105

� by solving the following minimization problem106

α̂ = arg min
α

{‖y − ��α‖2
2 + λα‖α‖1} (2)107

and then x is reconstructed by x̂ = �α̂.108

This can be easily extended to the block-based scenario, as109

stated in [10]. Let xi = Ri x denote an image patch extracted110

at location i , where Ri is the matrix extracting patch xi from x111

at pixel location i . Given a basis � , each patch can be sparse112

represented and solved by Eq. (1). Then the entire image x113

can be represented by the set of sparse code using {�αi }. The114

patches can be overlapped to suppress the boundary artifacts.115

Similarly, in order to reconstruct the image x from the116

measurement y, we can adopt the same block-based CS117

recovery by solving αi from Eq. (2). The whole image x is118

then reconstructed as x̂ = �α̂ = (
∑N

i RT
i Ri )

−1 ∑N
i (RT

i �α̂i )119

as proved in [10].120

The Iterative soft thresholding (IST) algorithm [11] can121

be very efficient in solving the problem in Eq. (2). In the122

(k + 1)-th iteration, the solution is given by α(k+1) =123

Sτ (α
(k) + �∗y − �∗��α(k)), where Sτ (·) is the classic soft-124

thresholding operator [11]. In this paper, we use a slightly125

modified IST algorithm [12], where the solution in each126

iteration is called the projected Landweber iteration with the127

adaptive descent parameter β(k) > 0,128

α(k+1) = PR[α(k) + β(k)�∗(y − ��α(k))], (3)129

where PR is the �2 projection of α on the �1 ball with130

radius R. The adaptive descent parameter β(k) can be selected131

using the greedy strategy as follows,132

133

β(k) = ‖�∗(y − ��α(k))‖2
2

‖��∗(y − ��α(k))‖2
2

(4)134

This is an accelerated version of IST that converges faster than 135

the original IST. Readers may refer to [12] for details. 136

B. Other Related Works 137

Buades et al. introduced in [13] the nonlocal 138

means (NLM) filtering approach to image denoising, 139

where the self-similarities between rectangular patches are 140

used as a prior on natural images. The idea of nonlocal 141

means has recently received much attention in image 142

processing [14]–[19]. For example, Peyré et al. [14] 143

proposed to use the Total Variation (TV) prior and nonlocal 144

graph to solve the inverse problem with application in CS. 145

The same idea was also adopted in Yang and Jacob [15]. 146

Zhang et al. [16] proposed TVNLR which improves the 147

conventional TV approach by adding a nonlocal regularization 148

to the CS recovery problem and solved the problem using 149

the Augmented Lagrangian Method (ALM). Shu et al. 150

proposed the NLCS algorithm [17] and tried to group similar 151

patches through NLS (nonlocal sparsity) regularization. 152

The authors in [19] proposed a nonlocal total variation 153

structure tensor (ST-NLTV) regularization approach for 154

multicomponent image recovery from degraded observations, 155

leading to significant improvements in terms of convergence 156

speed over state-of-the-art methods such as the Alternating 157

Direction Method of Multipliers (ADMM). Dong et al. 158

proposed the nonlocal low-rank regularization (NLR-CS) 159

method [18] which explored the structured sparsity of the 160

image patches for compressed sensing. In order to explore the 161

low-rank structure of the image patches, a smooth but non- 162

convex surrogate function for the rank estimation is adopted 163

as objective function. Zhang et al. proposed nonlocal TV 164

regularization (NLVT) [20] for CS image recovery. NLTV is 165

based on the Bregman iteration [21], namely Bregmanized 166

Operator splitting (BOS). 167

In this paper, we adopt the nonlocal means filtering idea and 168

introduce a new nonlocal estimation step after the initial CS 169

reconstruction to further remove noise. It differs from [14] 170

as we use the �1-norm based sparsity of the image and 171

result in solving a convex optimization problem using the 172

projection method. In [14] the nonlocal graph is similar to 173

the nonlocal weights between patches as used in our paper. 174

The main difference is that the author further imposed that 175

these weights correspond to a probability distribution and that 176

the graph only connects pixels that are not too far away. 177

While in [15], the nonlocal weights may be improved using 178

a different distance metric (i.e., robust distance metric) to 179

promote the averaging of similar patches while minimizing 180

the averaging of dissimilar patches. In this paper, we only 181

aim to find similar patches to form low-rank matrix and thus 182

differ from these methods. In [18] instead of using the nuclear 183

norm for low-rank approximation, the authors proposed to use 184

non-convex surrogate function and subsequently solved the 185

optimization problem via ADMM. 186

In [17], two non-local sparsity measures, i.e., non-local 187

wavelet sparsity and non-local joint sparsity, were proposed 188

to exploit the patch correlation in NLCS. It then combines 189

with the conventional TV measure to form the optimization 190
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objective function and use the ADMM method to solve the191

CS recovery problem. It differs from our algorithm in that192

their search for similar patches is incorporated in the objective193

function while NLDR directly adopts the nonlocal means194

filtering approach to find the similar patches and then conducts195

low-rank approximation. After getting the non-local low-rank196

estimation, we further incorporate the initial CS measurement197

constraint into the low-rank optimization problem, using a198

deterministic annealing (DA) approach to further improve199

the recovery result. Additionally, compared to the traditional200

ADMM method, we propose to use Douglas-Rachford split-201

ting method to effectively solve the combined optimization202

problem.203

In [22], Candès and Tao proposed to solve the matrix204

completion problem using low-rank regularization through205

convex optimization. Later in [23] Dong et al. first combined206

the nonlocal image representation and low-rank approach for207

image restoration and achived state-of-the-art performance in208

image denosing. Ji et al. [24] also incorporated the low-rank209

matrix completion in video denoising.210

To summarize, the main contribution of this paper is three-211

fold: First, we propose to incorporate the nonlocal similarity212

patches searching step after the initial CS image recovery213

task. By searching and incorporating the nonlocal similarity214

patches the traditional block based CS recovery artifacts could215

be resolved. Second, we propose to estimate the grouped216

similarity patches matrix as a low-rank matrix completion217

problem, referred as nonlocal low-rank estimation. The idea218

is that, by searching the nonlocal similarity patches we could219

resolve the block and staircase artifacts, while using low-rank220

estimation we can further denoise the grouped similarity221

patches. Third, we incorporate the initial CS measurement222

constraint into the low-rank estimation optimization223

problem. By using a deterministic annealing (DA) approach,224

the Douglas-Rachford splitting effectively solves the225

reformulated optimization problem.226

III. NONLOCAL LOW-RANK REGULARIZATION AND227

DOUGLAS-RACHFORD SPLITTING228

In this section, we present the idea of nonlocal low-rank229

regularization, followed by the proposed Douglas-Rachford230

splitting method. We refer to the algorithm as the Nonlocal231

Douglas-Rachford splitting (NLDR) algorithm.232

A. Nonlocal Low-Rank Regularization for CS Image233

An example to illustrate the nonlocal estimation step is234

shown in Fig. 1. The Lena image in the first row is obtained235

from the IST CS recovery algorithm. Then the nonlocal similar236

patches are searched across the entire image. We denote the237

nonlocal similar patches of xi as xi,1, xi,2, xi,3, · · · xi,q . These238

extracted patches then form the matrix Bi where the low-rank239

approximation is conducted to yield the resulting denoised240

patch matrix, as shown in the second row. We apply patch241

reweight to obtain the estimated patch xe to update the original242

patch xi . After iterating over the entire image, the much243

cleaner Lena image is shown leftmost in the second row.244

Fig. 1. An illustration of nonlocal estimation and similar patches denoising
using low-rank matrix approximation.

1) Nonlocal Similarity Patches: The basic idea of 245

nonlocal (NL) means filtering is simple. For a given pixel 246

ui in an image x , its NL filtered new intensity value, denoted 247

by NL(ui ), is obtained as a weighted average of its neighbor- 248

hood pixels within a search window of size w. 249

In our work, we extend the pixel-wise nonlocal filtering 250

to the patch-based filtering. Specifically, we search for the 251

nonlocal similar “patches” xi, j , j = 1, 2, · · · , q , to the given 252

patch xi in a large window of size w centered at pixel ui . 253

Here, q is the total number of similar patches to be selected. 254

The weight of patch xi, j to xi , denoted as ωi j , is then 255

computed by 256

ωi j = 1

ci
exp(

−‖xi − xi, j ‖2
2

h2 ), j = 1, · · · , q (5) 257

where h is a pre-determined scalar and ci is the normalization 258

factor. Accordingly, for each patch xi , we have a set of its 259

similar patches, denoted by �i . Then the nonlocal estimates 260

of each patch x̂i can be computed as x̂i = ∑
j∈�i

ωi j xi, j . 261

Further, this can be written in a matrix form as 262

x̂nl
.= W

p∑

i=1

x̂i , W(i, j) =
{

ωi j , if x j ∈ �i

0, otherwise.
(6) 263

where p denotes the number of all patches in the entire image 264

and x̂nl is the nonlocal estimated image output. 265

2) Patch Denoising by Low-Rank Approximation: Although 266

we can use Eq. (6) to remove noise in the IST recovered 267

image x̂ to a certain degree, this is based on a weighted 268

average of patches in x̂ , which are inherently noisy. Thus, it 269

is imperative to apply some denoising techniques before the 270

nonlocal similarity patch reweight using Eq. (6) to prevent 271

the noise from accumulating. By rewriting the nonlocal 272

similarity patches into the matrix format, we have 273

Bi = [xi,1; xi,2; , · · · ; xi,q ], where each column of Bi is a 274

vector representation of xi, j , j = 1, 2, · · · , q for patch xi . 275

Since all columns of Bi share similarity with patch xi , 276

the columns of Bi should bear a high degree of similarity 277

between each other. In other words, we can safely treat Bi 278

as a low-rank matrix. We thus formulate the nonlocal patch 279

denoising problem into the low-rank matrix approximation 280
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problem [22] as follows,281

min
B̂i

1

2
‖Bi − B̂i‖2

2 + λBi ‖B̂i‖∗, (7)282

where ‖B̂i‖∗ is the nuclear norm of the low-rank approximated283

patch matrix B̂i , defined by ‖B̂i‖∗ � trace(

√

B̂i
T

B̂i ) =284
∑q

r=1 σr , and σr ’s are the singular values of B̂i .285

In addition, since the columns of Bi (or the patches) are286

also a subset of the reconstructed image from IST recovery287

algorithm, it should be subject to the CS measurement con-288

straint y = �x . Therefore, multiplying Eq. (7) with W, we289

reformulate the denoising problem of Eq. (7) into290

min
x

1

2
‖x − WBi‖2

2 + λx‖x‖∗ s.t. y = �x . (8)291

In what follows, we discuss in sec. III-B how to solve292

Eq. (8) with the CS measurement constraint using the method293

referred to as the Douglas-Rachford splitting method.294

B. Douglas-Rachford Splitting295

The Douglas-Rachford splitting method was originally pro-296

posed in [25] for solving matrix equations. Later on it was297

advanced as an iterative scheme to minimize the functions of298

the form,299

min
x

F(x) + G(x) (9)300

where both F and G are convex functions for which one is301

able to compute the proximal mappings proxγ F and proxγ G302

which are defined as303

proxγ F (x) = arg min
y

1

2
‖x − y‖2

2 + γ F(y) (10)304

The same definition applies to proxγ G [26]. In order to solve305

Eq. (8), we have F(x) = ιC(x) and G(x) = ‖x‖∗, where306

C = {x : y = �x} and ιC is the indicator function.307

Given that F(x) = ιC(x), the solution to Eq. (10) is the308

same as projections onto convex sets (POCS), and does not309

depend on γ. Therefore, we have310

proxγ ιC F (x) = proxιC F (x) = x + �+(y − �x), (11)311

where �+ = �T (��T )−1 is the pseudoinverse of �. The312

proximal operator of G(x) is the soft thresholding of the313

singular values314

proxγ G(x) = U(x) · ρλx (S(x)) · V (x)∗ (12)315

where x = U ·S ·V ∗ is the singular value decomposition of the316

matrix x and S = diag(si )i is the diagonal matrix of singular317

values si , and ρλx (S) is defined as a diagonal operator.318

ρλ(S) = diag(max(0, 1 − λx/|si |)si )i (13)319

We can then solve the problem in Eq. (7) using the320

Douglas-Rachford iterations given by321

x̃k+1 = (1 − μ

2
)x̃k + μ

2
rproxγ G(rproxγ F (x̃k)) (14)322

and the (k + 1)-th solution x̂k+1 is calculated by323

x̂k+1 = proxγ F (x̃k+1). Here the reversed-proximal mappings324

Algorithm 1 Nonlocal Douglas-Rachford Splitting (NLDR)
Algorithm

is given by rproxγ F = 2proxγ F −x for F(x) and in the similar 325

fashion to G(x).. The parameters are selected as λx > 0 and 326

0 < μ < 2 which guarantee x̂ to be a solution that minimizes 327

F(x) + G(x) based on the proof in [27]. 328

C. The NLDR Algorithm 329

Algorithm 1 provides a pseudo-code for the proposed 330

Nonlocal Douglas-Rachford splitting (NLDR) algorithm. 331

Given the observation y (i.e., compressed measurements), the 332

NLDR algorithm first outputs an intermediate reconstruction 333

result x̂ I ST through the IST algorithm. This soft-thresholding 334

output is then used to calculate the nonlocal estimated image 335

x̂nl , which is used to initialize the low-rank optimization 336

problem in Eq. (7) where the Douglas-Rachford splitting 337

method will be carried out iteratively based on Eq. (14). 338

As for calculating the nonlocal estimates of the image, 339

the NLDR algorithm obtains the averaged result based on 340

J nonlocal estimation iterations. For the IST algorithm, we 341

empirically set the penalty parameter λα = 1.8 and soft- 342

thresholding parameter τ = 1.2, respectively. 343

IV. EXPERIMENTS 344

In this section, we evaluate the NLDR algorithm for 345

CS image reconstruction where both standard test images and 346

MRI images are used. The reason for choosing MRI images 347

for evaluation purpose is due to the significant impact of CS 348

on the clinical practice of MRI, where long acquisition time 349
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TABLE I

PSNR PERFORMANCE IN dB

has been one of the primary obstacles. We implement the350

algorithm using Matlab 2013b on a 2.20GHz laptop computer.351

BCS-SPL [4] is a block-based CS image recovery352

method solved using a smoothed version of projected353

Landweber (SPL) algorithm. The smoothing process is done354

by the Wiener filter. We further compare our result with355

one of the state-of-the-art algorithms for image CS recovery,356

known as TVAL3 [6]. TVAL3 tries to minimize the image357

total variation norm using augmented lagrangian and alternat-358

ing direction algorithms. Several TV-based methods are also359

compared. The TV benchmark method denoted as TV which360

is implemented based on [28], TVNLR [29] and NLTV [20].361

We also compare NLDR performance with other nonlocal362

based approaches, e.g., NLCS [17] and NLR-CS [18]. Finally,363

to evaluate the potential of NLDR as a standalone denoising364

method, we compare its performance with the state-of-the-art365

BM3D [30] method for noise removal purpose.366

A. CS Recovery on Standard Image Dataset367

We present the experimental results for noiseless CS mea-368

surements and then report the results using noisy CS measure-369

ments.370

Fig. 2. CS recovery results on Lena image with 10% measurements at
iteration j .

1) Noiseless Recovery: We first test the NLDR algorithm 371

in noiseless settings using standard test images of size 372

512 × 512. The block-based image patch is of size 6 × 6.

AQ:2

373

We set the number of similar patches q in the nonlocal 374
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Fig. 3. CS Reconstructed image Barbara with 30% measurement ratio. (a) Original image; (b) proposed NLDR recovery, PSNR = 37.30dB;
(c) BCS-SPL recovery [4], PSNR = 25.92dB; (d) TVAL3 recovery [6], PSNR = 24.79dB; (e) TVNLR recovery [29], PSNR = 25.35dB. (f) NLCS
recovery [17], PSNR = 31.65dB; (g) NLR-CS recovery [18], PSNR = 34.26dB; (h) NLTV recovery [20], PSNR = 31.79dB.

Fig. 4. Boat image with cropped character patch using 20% measurements. (a) proposed NLDR recovery, PSNR = 32.48dB; (b) NLCS recovery [17],
PSNR = 30.66dB; (c) TVNLR recovery [29], PSNR = 28.02dB; (d) NLR-CS recovery [18], PSNR = 29.07dB; (e) NLTV recovery [20], PSNR = 27.97dB.

Fig. 5. Part of Lena image with 200% magnification using 20% measurements. (a) Original image; (b) reconstruction using proposed NLDR with IST,
PSNR = 36.33dB; (c) TVAL3 + NLDR, PSNR = 36.35dB (d) BCS-SPL + NLDR, PSNR = 36.35dB.

estimation step as 45. We use the scrambled Fourier matrix as375

the CS measurement operator � and DCT matrix as the basis376

� to represent the original image in the initial IST recovery.377

The parameters are selected as μ = 1 for DR iteration and378

λx = ci
max(si )

for each iteration where ci = C0 ∗ ε, 0 < ε < 1379

and C0 is a constant. For the number of iterations in the380

outerloop, we find that the recovery result gradually converges 381

when J reaches 12 for all the image datasets. Fig. 2 shows 382

one example on Lena image using 10% of measurements. Note 383

that at iteration 0, we use the initial I ST recovery result. 384

Table I compares PSNR with different measurement ratios 385

(i.e., m
n ). We see that the NLDR algorithm considerably 386



IE
EE

Pr
oo

f

LI AND QI: DOUGLAS–RACHFORD SPLITTING APPROACH TO CS IMAGE RECOVERY 7

TABLE II

CS NOISY RECOVERY RESULTS ON STANDARD TEST IMAGES WITH 20% MEASUREMENTS

outperforms the other methods in all the cases, with387

PSNR improvements of up to 11.38dB and 13.68dB,388

as compared with BCS-SPL and TVAL3, respectively.389

Furthermore, the average PSNR gain by NLDR over BCS-SPL390

is 6.18dB and 5.17dB over TVAL3. For the other nonlocal391

based methods, we see that NLDR also outperforms them,392

with average PSNR gain over NLCS by 2.19dB, 5.41dB over393

TVNLR, 2.79Db over NLR-CS and 4.28dB over NLTV.394

Since originally NLDR is calculated on top of the395

IST recovery algorithm with an extra nonlocal estimation396

step, in order to perform a fair comparison among the397

BCS-SPL and TVAL3 algorithms, we use the result image398

from BCS-SPL and TVAL3 algorithm as the input to the399

NLDR algorithm. By doing this, we would be able to 400

quantify how much improvement NLDR has gained. Also, 401

since the initial image from IST output is noisy, we further 402

apply the state-of-the-art denoising algorithm - BM3D on top 403

of the IST recovery result to denoise the result image in order 404

to compare with the NLDR result. 405

In Table I, the column TVAL3+NLDR denotes 406

applying NLDR on the TVAL3 resulting image, the column 407

BCS-SPL+NLDR denotes NLDR applied on top of the 408

BCS-SPL output, and IST+BM3D denotes BM3D applied 409

on top of the IST output. Note, we also generate the sole 410

IST algorithm output in the first column. From the table, 411

we can see that the columns correspond to TVAL3+NLDR, 412
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BCS-SPL+NLDR and NLDR yield similar PSNR. This413

result indicates the generalization capability of NLDR, that it414

actually gives the best available denoised recovery result no415

matter what the initial input is. That is, NLDR has the great416

potential of serving as a stand-alone denoising algorithm.417

Some visual results of CS reconstructed image Barbara with418

30% measurement ratio are presented in Fig. 3. Obviously,419

NLDR generates much better visual quality than those420

from BCS-SPL and TVAL3, where both BCS-SPL and421

TVAL3 have blurred artifacts. When compared using Table I,422

we see NLDR outperforms the other two algorithms largely423

in PSNR. The reason is that the image Barbara itself has a424

lot of texture patterns (i.e., nonlocal similar patches), which425

had been successfully exploited in the NLDR algorithm.426

Fig. 4 demonstrates the Boat image with cropped character427

patch using 20% measurements. Also, we show in Fig. 5 the428

result of original NLDR using IST as well as TVAL3+NLDR429

and BCS-SPL+NLDR. They all have similar visual results430

as compared to the original image. This is consistent to the431

observation made based on Table I that their recovery PSNRs432

are very close.433

2) Noisy Recovery: In this experiment, the robustness of434

the NLDR algorithm to noise is demonstrated. In practice,435

CS measurements consist mostly of linear operations, thus436

the Gaussian noise corrupting the signal during the signal437

acquisition is approximated as the Gaussian noise corrupt-438

ing the compressed measurement vector. In our experiments,439

we simply corrupt the compressed measurement vec-440

tor by different levels of Gaussian noise measured by441

Signal-to-Noise Ratios (SNRs). We use all seven standard test442

images and add different SNRs (5, 10, 15, 25, 35) to their 20%443

CS measurements and report the PSNR values of the final444

CS recovered image in Table II.445

From Table II, we see that by adding 5dB of Gaussian446

noise on the CS measurements, all the TV-based algorithms’447

(i.e., TV, NLTV, TVAL3 and TVNLR) recovery performance448

suffer in terms of PSNR as compared with their original449

noiseless recovery settings. When the noise SNR reaches 35,450

the recovery result is close to its noiseless case. It also451

demonstrates that the recovery performance degrades on both452

BCS-SPL and NLCS when noise is added while NLDR is453

affected much less by the noise in all SNR cases. We see454

that the NLR-CS algorithm is also robust on noise with only455

less than 1dB PSNR decrease as compared with its noiseless456

settings for all the testing images. For BM3D, as a denoising457

algorithm, we see that the recovery result is not affected458

much with different noise dB levels. However, NLDR still459

outperforms NLR-CS and BM3D in the noisy CS recovery460

case.461

B. Recovery Performance on MRI Data462

In this experiment, the performance of the proposed463

NLDR algorithm is demonstrated on the real MRI Brain464

image data with a variety of undersampling factors. The image465

used is in vivo MR scans of size 512 × 512 from [31]. The466

CS data acquisition is simulated by downsampling the467

2D discrete Fourier transform of the Brain image. Our result is468

Fig. 6. Axial T2 Weighted Brain image CS recovery using 4 fold down-
sampling (25% measurements). (a) Original image; (b) reconstruction using
SparseMRI, PSNR = 31.84dB; (c) DLMRI, PSNR = 34.75dB; (d) NLDR
(IST), PSNR = 34.86dB.

compared with a leading CS MRI method by Lustig et al. [3] 469

(denoted as SparseMRI) and the dictionary learning based 470

recovery algorithm called DLMRI [32]. The SparseMRI 471

method is to minimize both the l1 norm and the TV norm 472

of the image in the wavelet domain. The DLMRI uses 473

K-SVD dictionary learning methods and tries to find the 474

best sparse representation of the image for CS recovery. 475

We adopt the same 2D random sampling scheme as in [32] 476

with 2.5, 4, 6, 8, 10, 20 fold downsampling. Here, for the 477

k fold downsampling, it is equivalent to the measurement ratio 478

(i.e., m
n ) of 1

k . 479

In Fig. 6, we present the CS recovery result on the Brain 480

image with 4 fold downsampling. We observe that NLDR 481

(based on IST) gives the best recovery result in PSNR which 482

is 34.86dB. The DLMRI method also has a close PSNR of 483

34.75dB. We also demonstrate in Fig. 7 the comparison with 484

various downsampling factors. When the downsampling factor 485

is within 10 fold, the NLDR performance is comparable to 486

that of the DLMRI method, while the SparseMRI generates 487

much lower recovery PSNRs. When the downsampling factor 488

reaches 20, the reconstructed image PSNR drops drastically 489

for SparseMRI, and the NLDR is 1.15dB less than DLMRI 490

PSNR. The reason that DLMRI performs better than NLDR 491

is that, DLMRI uses dictionary learning to find the best 492

sparse representation basis for each single test image. NLDR 493

naturally utilizes a general DCT basis to represent the original 494

test image. As a universal basis, it is not chosen to be 495

optimal for one image. The DLMRI also has its disadvantages- 496

the recovery time usually lasts for hours for a large image 497
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Fig. 7. CS recovery results comparison with various downsampling factors.

as the dictionary learning takes a lot of computations.498

The computation time needed for NLDR is at the same level499

as those of TVAL3 and BCS-SPL. For all our test images of500

size 512 ×512, NLDR takes, on average, about 10 minutes to501

finish on a Laptop PC.502

V. CONCLUSION503

This paper presented a CS image recovery algorithm based504

on Douglas-Rachford Splitting with nonlocal estimation. The505

proposed NLDR algorithm first used the iterative thesholding506

algorithm to obtain the intermediate image reconstruction507

result. Then a nonlocal estimation step was applied to the508

reconstructed image to improve the recovery performance.509

In the nonlocal estimation step, we reformulated the patches510

estimation as patch denoising problem using low-rank matrix511

approximation. We proposed a Douglas-Rachford splitting512

method to solve the CS recovery problem with the non-513

local estimation. Experimental results validated the perfor-514

mance of the proposed NLDR algorithm in both PSNR and515

visual perception on standard test images with both noiseless516

and noisy settings. NLDR outperformed the state-of-the-art517

CS recovery algorithms and showed it can be applied on top518

of existing recovery algorithms to further improve the recovery519

performance. Experiments on MRI data also demonstrated it520

is practical for real applications with competing results.521
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