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ABSTRACT

The ChemCam instrument package on the Mars rover, “Cu-
riosity”, is the first planetary instrument that employs laser-
induced breakdown spectroscopy (LIBS) to determine the
compositions of geological samples on another planet. How-
ever, the sampled spectra are imperfect for elemental concen-
tration estimation because of the inevitable sampling noises,
the spectra continuum and the high dimensionality, thus the
preprocessing procedures (e.g., dark removal, denosing and
continuum removal, etc.) are necessary to improve the quality
of the spectra. This paper not only presents a comprehensive
evaluation of each preprocessing techniques, but also propose
to use a non-traditional denoising technique and an effective
band selection approach to greatly improve the accuracy of
concentration estimation. In addition, we also test various
combination of each procedure to give the best preprocessing
sequence. The claims are all tested on a real LIBS dataset,
the experimental results demonstrate the effectiveness of the
preprocessing and also validate our claims.

Index Terms— LIBS spectrum, Continuum removal, De-
noising, Band selection, Concentration estimation.

1. INTRODUCTION

The chemical camera (ChemCam) instrument suite is one of
the remote sensing composition facilities for the Mars Sci-
ence Laboratory (MSL) rover. The Laser-Induced Breakdown
Spectroscopy (LIBS) was selected as one part of this suite for
its capability of determining elemental compositions of rocks
and soils within seven meters of the instrument [1]. The ad-
vantage of the LIBS instrument to other Spectrometers is that
it is not only able to remove dust and coatings or weathering
rinds from rock’s surface to determine their underlying com-
position, but also can rapidly detect many elements, including
some light elements.

LIBS is an attractive technique for in situ elemental anal-
ysis since it requires no sample preparation and the analysis
results are also available in real time. It is a form of atomic
emission spectroscopy, that works by focusing a high power
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Fig. 1. An example of LIBS spectrum.

laser pulse onto a target to create a plasma of excited material
that emits light containing spectral lines corresponds to the
atoms and ions that compose the plasma [2]. Because of the
large distance between the instrument and the observed sam-
ple and also other disturbances, the LIBS spectral data will
be collected in a noisy environment, with spectrally variable
characteristics. In particular, the noises may be not identi-
cally distributed along the wavelength axis. In addition, the
LIBS spectral emission also contains a background contin-
uum due to Bremsstrahlung and ion/electron recombination
process, which contains non-relevant spectral information [3].
Therefore, we consider a LIBS spectrum as the superposition
of emission line E , continuum C and noiseN . Fig.1 shows an
example of one typical LIBS spectrum, which also indicates
the responding wavelengths of different elements.

Traditional LIBS data preprocessing involves subtracting
light background, removing noise and removing electron con-
tinuum. In this paper, we revisit the preprocessing procedures
of the LIBS data and expect that the spectra after preprocess-
ing can provide better performance for multivariate model
based (e.g., PLS) elemental abundance estimation. Since a
non-laser “dark” spectrum will be taken in close temporal
proximity to the LIBS spectra, the information of the light
background is always given with the raw spectral data. There-
fore, we mainly focus on denoising (Dn) and continuum re-
moval (CR). Usually, the continuum removal is done after de-
noising because the impulsive noises might affects the extrac-
tion of continuum. However, we find the impulsive noises sel-
dom affect the CR step because each of the element response



will give a large value that noises can not be reached easily,
and thus guess the denoising should be taken after CR since
the procedure of CR also might magnify undesired noises.

As for CR in this work, we adopted a standard continuum
removal algorithm introduced in [4]. The spectral continuum
occurs when the interactions of a large number of atoms, ions
spread out all the discrete emission lines of an object, so they
can no longer be distinguished. Since most remotely sensed
spectra are composed of mixtures instead of pure materials,
by removing the continuum, we are permitted to compare in-
dividual features of each element from a common baseline.

As for LIBS denoising, we presented a comparative anal-
ysis between two distinct approaches: the traditional Wavelet
Decomposition Transformation (WDT) [5] and the Block-
Matching and 3D Filtering (BM3D) [6]. WDT has been
widely used in areas of signal processing. The WDT based
approaches do not require any particular assumptions about
the nature of the signal, permits discontinuities and spatial
variation, and also exploits the spatially adaptive multireso-
lution of the wavelet transform. While BM3D represents the
state-of-the-art in the field of image/video denoising. It is an
approach of non-local adaptive nonparametric filtering based
on enhanced sparse representation in transformed domain.
Though the LIBS spectra are in 1-D space, we can tailor each
spectrum into a virtual image to be denoised.

In addition to these routine preprocessing procedures, we
also find that there are only a few wavelengths give responses
for each element, though all the responses will span the whole
range 240-905 nm. Therefore, some of the wavelengths may
not give response to any of the elements in consideration.
These useless wavelengths not only give very limited con-
tribution in elemental concentration estimation, but also in-
crease the dimension of the spectrum, resulting in possible
Hough effect and higher computational cost. To solve this
problem, we add one more procedure: band selection, after
the aforementioned procedures. With lower dimension, the
spectral analysis can be done much faster with even higher
estimation accuracy.

2. CONTINUUM REMOVAL

The continuum of a spectrum is defined as a continuous, con-
vex hull draped over the source spectrum at its high points.
To removed the continuum existed in a spectra, we use the al-
gorithm in [4]. We first locate all the high points on the spec-
trum, and try to combine the line segments that connect every
two adjacent high points without cross the spectrum. By do-
ing so, this approach assures that the resulting continuum is
always convex and does not cross through the original spectra.
The linear data interpolation method is used when connecting
two points. In additional, because the visible and near in-
frared (VNIR) portion of the spectrum has by far the strongest
relative contribution of the continuum. We can evaluate the
CR only in the VNIR range or on the whole spectrum range,
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Fig. 2. Illustration of Continuum Removal. Left, red points
are the identified high points on all spectrum ranges and the
dash line is the extracted continuum; right, the magenta spec-
trum is the one after continuum removal on VNIR spectrum
range.

respectively. The Fig. 2 shows an example of CR applied on
the whole range and VNIR range. The left sub-figure shows
the high points and the continuum extracted from the whole
spectrum range using linear interpolation. After the contin-
uum is extracted, the source spectrum will be divided by its
continuum spectrum, resulting in a continuum removed spec-
trum containing normalized reflectance values ranging from
0.0 to 1.0. The right sub-figure in Fig.2 shows the example
spectrum as well as the resulting continuum removed spectra
when CR only applied on VNIR.

3. SPECTRAL DENOISING

3.1. Wavelet Decomposition (WDT)

Wavelet analysis is becoming one of the most useful tools in
signal processing areas. In related literature, [5, 7] provided
several examples of signal denoising works applying wavelet
transform.

To remove noises, the noisy spectrum is transformed into
the wavelet domain and expanded at different wavelet scales.
Then, the decomposed wavelet coefficients will be filtered by
a threshold, and only those with values greater than the thresh-
old will be kept. Finally, the denoised spectrum is obtained by
transforming the modified wavelet coefficients back into the
time domain. The choice of the threshold value is a key step.
On one hand, a large threshold results in a lost of useful infor-
mation. On the other hand, a small one does not remove the
noise to a satisfactory extent. Donoho [8] proposed a method
for defining a kind of soft threshold T for signal denoising
based on wavelet decomposition.

T = (M/0.6745)×
√

2 ln(N) (1)

where M is the medium value computed iteratively at each
scale and N is the length of the signal at each scale. Then the
soft threshold value is defined as:

Wjk =


Wjk for |Wjk| ≥ 1.25T

1.25T (|Wjk|−0.75T )
sgn(Wjk)·0.5T for 0.75T ≤ |Wjk|

< 1.25T
0 for |Wjk| < 0.75T

(2)



Finally, all the wavelet coefficients are filtered by this strategy
before transformed back into the time domain.

3.2. Block-Matching and 3D Filtering (BM3D)

Dabov et al. proposed a patch-based strategy that exploits im-
age self-similarities and gives state-of-the-art results for im-
age denoising [6]. Similar to approach of nonlocal means fil-
tering [9], they reconstruct patches by finding similar ones in
the image (block matching), stacking them together into a 3D
block, and denoise the block using hard or soft thresholding
with a 3D orthogonal dictionary (3D filtering). In conjunc-
tion with a combination of weighted averages of overlapping
patches, Kaiser windows, and Wiener filtering to further im-
prove results, the BM3D has proven to be very efficient and
gives better results than regular non-local means.

The BM3D approach is realized by four successive steps:
grouping 2D fragments in image into 3D arrays, 3D transfor-
mation of the group array, shrinkage of the transformed spec-
trum and inverse 3D transformation. In this paper, we use the
BM3D to eliminate noise in the LIBS spectra. Though, the
spectra are all 1-D signals, we can tailor them into a 2D matri-
ces as virtual images, then the denoising based on BM3D can
further attenuate noises by considering the repeated fragments
on each spectrum that without obvious elemental responses.

4. BAND SELECTION

As we mentioned before in introduction, many of the bands
on LIBS spectrum do not give response in presence of ele-
ments under consideration. In order to extract the most ef-
fective wavelengths for improving the accuracy of concen-
tration estimation and also reduce the spectral dimension to
save computational cost, we adopt the Sequential Floating
Forward Selection (SFFS) algorithm [10] to find the optimal
band subset for better concentration estimation. Since we are
using Partially Least Square Regression (PLS) for estimation,
the criteria function in SFFS is chosen as the PLS estimation
accuracy. Without any pre-knowledge about the band’s ef-
fectiveness, the SFFS always constructs the “best” combina-
tion of wavelength bands to maximize the index of the criteria
function using a non-exhaustive way.

Though the SFFS uses an efficient way to perform band
selection, the dimension of LIBS can be as high as 6000, the
SFFS algorithm still need quite a long time to finish the band
selection process. Based on the original observation, we also
take a preliminary band selection before SFFS by filtering ac-
cording to the standard deviation (StdFilter) of each band in
the measured dataset. Then, the dimension of the spectra that
be input into the SFFS can be reduced to a half or even one
third by removing those bands with small variation. Then, the
SFFS can be done in a much shorter time.

5. EXPERIMENTS

The data used in our experiments is a standard LIBS spec-
tral library developed by Los Alamos National Laboratory
(LANL) (download at the website [1]). The spectral library
was developed using 66 rock standards in the form of pressed
powder disks, glasses, and ceramics to minimize heterogene-
ity on the scale of the observation (350-550 m dia.). The stan-
dards covered typical compositional ranges of igneous ma-
terials and also included sulfates, carbonates, and phyllosili-
cates. Each sample has 4 spectra, and each of which is aver-
aged from 50 measures. The concentration ground truth of the
compositional elements is also provided, thus we can quanti-
tatively evaluate the quality of the preprocessed LIBS spectra
for elemental concentration estimation.
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Fig. 3. Intermediate results after each procedure.

As introduced before, our preprocessing involves dark
removal (DR), continuum removal (CR), spectral denoising
(Dn) and band selection (BS). We first show the intermediate
results after each procedure in Fig.3. We can observe that
DR does not change the spectrum much, but for CR, which
applied only on VNIR wavelengths in Fig.3, it does modified
the shape of the spectrum a lot and the highest response val-
ues at different wavelength ranges are normalized into similar
scale. As for the two different denoising approaches under
consideration, we can find that the wavelet based denoising



Table 1. Accuracy of elemental concentration estimation in
each intermediate step. (Note: LA-CR denotes linear CR ap-
plied on ALL wavelengths; Li-on-All denotes linear CR on
whole range; Preprocessed denotes the preprocessed raw data
by standard procedures in [3].)

Data Type subtype PLS LV Avg. Err
Raw 19 1177.53
+DR 19 1183.92

+DR+CR Li-on-ALL 19 1052.91
Li-on-VNIR 17 1087.99

+DR+Dn Wavelet 19 1178.19
BM3D 19 1139.71

+DR+W-Dn+CR Li-on-VNIR 19 1079.93
+DR+B-Dn+CR Li-on-ALL 27 1044.29

+DR+LA-CR+Dn Wavelet 27 1042.34
· · · + StdFilter std ≥ 0.02 27 1076.07
· · · + SFFS-BS 23 976.45

+DR+LA-CR+Dn BM3D 17 1026.99
· · · + StdFilter std ≥ 0.02 17 1045.88
· · · + SFFS-BS 25 884.05

+DR+LV-CR+Dn + SFFS-BS 27 767.75
PreProcessed∗ 15 1382.12

mainly removes white noise with small scale. In contrast, the
BM3D based denoising removes noise with much larger scale
and gives a flat spectrum at non-response wavelength ranges.
This may due to the reason that BM3D also explores the self-
similarity and be able to identify which patch may correspond
to noise based on the statistical property. Finally, we compare
the selected bands after two denoising approaches, 124 and
98 effective bands are selected out for final elemental concen-
tration estimation, respectively. Because the BM3D removes
noise to a further extent, the number of selected bands is even
smaller than the WDT based denoising.

We propose two claims in this paper: First, the denoising
should be taken after CR in preprocessing procedures; Sec-
ond, band selection should be taken as an additional proce-
dure for elemental concentration estimation. We thus quanti-
tatively evaluate each of the preprocessing procedures based
on the estimation accuracy, and seek for the optimal sequence
by different combinations. We use a 66-fold cross validation
for evaluation, where only one sample with 4 spectra will be
tested each round and the averaged result is used as the es-
timation for the one sample in test. We also scan a range of
values for choosing the optimal latent parameter for PLS re-
gression to guarantee a fair comparison. From the experimen-
tal results as shown in Table 1, we have several observations:
First, the CR procedure is more effective than denoising, this
is intuitive since CR magnifies the useful information on the
spectra; Second, the BM3D based denoising can perform bet-
ter than traditional wavelet based approach; Third, the con-
centration estimation indeed achieves higher accuracy when
put denoising after CR; Fourth, the additional band selection

can greatly improve the accuracy of the concentration esti-
mation, and the estimation speed can be greatly boosted after
StdFilter though the StdFilter does not help in accuracy im-
provement; Fifth, our preprocessed spectra can provide much
higher estimation accuracy compared to the preprocessed data
via standard procedures in [3], and the estimation error can be
reduced to almost a half (767.75 vs 1382.12).

6. CONCLUSION

We revisited the LIBS spectral preprocessing procedures for
accurate elemental concentration estimation. With observa-
tion of the LIBS spectral property, we identified effective al-
gorithms for continuum removal, spectral denoising and band
selection. In addition, by comprehensive comparisons in ex-
periments, we also determined the optimal preprocessing se-
quences to achieve high estimation accuracy. The experimen-
tal results confirmed the use of our strategy for improved per-
formance of elemental concentration estimation via LIBS.
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