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ABSTRACT

This paper focuses on surveillance video processing using
Compressed Sensing (CS). The CS measurements are used
for recovery of the video frame into a low-rank background
component and sparse component that corresponds to the
moving object. The spatial and temporal low-rank features
of the video frame, e.g., the nonlocal similar patches within
the single video frame and the low-rank background compo-
nent residing in multiple frames, are successfully exploited.
We propose rLLSDR that consists of three major components.
First we develop an efficient single frame CS recovery algo-
rithm, called NLDR, that operates on the nonlocal similarity
patches within each frame to solve the low-rank optimiza-
tion problem with the CS measurements constraint using
Douglas-Rachford splitting method. Second, after obtain-
ing a few NLDR recovered frames as training, a fast bilat-
eral random projections (BRP) scheme is adopted for quick
low-rank background initialization. Third, rLSDR then in-
corporates real-time single video frame to recursively recov-
er the sparse component and update the background, where
the proposed NLDR algorithm can also be used here for s-
parse component estimation. Experimental results on stan-
dard surveillance videos demonstrate that NLDR, performs
the best for single frame CS recovery compared with the
state-of-the-art and rLSDR could successfully recover the
background and sparse object with less resource consump-
tion.

Keywords
Compressed sensing, low-rank approximation, sparse recov-
ery, surveillance video processing

1. INTRODUCTION

Smart Camera Networks (SCNs) have been traditionally
used in surveillance and security applications [20], where
a plural of cameras are deployed and networked with each
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other through wireless connections. The cameras transmit
surveillance videos to a processing center where the videos
are processed and analyzed. Of particular interest in surveil-
lance video processing is the ability to detect anomalies and
moving objects in a scene automatically and quickly |14].

Detection of moving objects is a well-established problem
that has received a great deal of attention from the research
community (22} |25]. Classical techniques often involve per-
forming background subtraction, object segmentation, and
sequential estimation for the objects of interest [21]. An-
other approach is based on low-rank and sparse modeling
|4], where the background is modeled by a low rank matrix,
and the moving objects are identified by a sparse component
(e.g., |27, [1]). These methods require all pixels of surveil-
lance video to be captured, transmitted and analyzed.

However, due to the growing availability of cheap, high-
quality cameras, the amount of data generated by the video
surveillance system has grown drastically. The challenge
arises on how to process, store or transmit such enormous
amount of data under real-time and bandwidth constraints
|124]. At the same time, most of the data is uninteresting
due to inactivity (e.g., background). There is a high risk of
the network being overwhelmed by the mostly uninteresting
data that prevents timely detection of anomalies and mov-
ing objects [14]. Thus, it is imperative for SCNs to transmit
a small amount of data with enough information for reli-
able detection and tracking of moving objects or anomalies.
The theory of Compressed Sensing (CS) |11} 3] allows us
to address this problem. Under certain conditions related
to sparse representations of video frames, CS can effectively
reduce the amount of data collected by the system while re-
taining the ability to faithfully reconstruct the information
of interest.

When applying CS on the surveillance video acquisition, the
CS measurements are transmitted to the processing center.
The original pixel values of the video frame are unknown,
and therefore, the traditional background subtraction [21],
low-rank and sparse modeling |27, |1] cannot be applied di-
rectly. A direct approach is to recover the video frame first
and then apply the traditional techniques. The drawbacks
are two-fold: First, the CS recovery algorithm does not take
advantage of special characteristics of surveillance video in
which a well defined, relatively static background exists [14].
Second, in many applications, one would like to quickly ob-
tain the background and object estimates on-the-fly, rather



than in a batch fashion, it is also desirable to incorporate
real-time sample-by-sample (i.e., streaming) frame to up-
date the recovery result.

In this paper, we propose a method named rLSDR (re-
cursive Low-rank and Sparse estimation through Douglas-
Rachford splitting) for segmentation of background by re-
cursively estimating low-rank and sparse components in the
reconstructed surveillance video frames from CS measure-
ments. As in [4], the low-rank component is the back-
ground, and the sparse component identifies moving object-
s. In this method, First, we propose an algorithm named
NLDR (NonLocal Douglas-Rachford splitting) to solve the
single frame CS recovery problem. NLDR takes advan-
tage of self-similarities within the single frame and models
it as a low-rank matrix. An efficient algorithm based on
Douglas-Rachford splitting (DR) is proposed to solve the
low-rank optimization problem with the CS measurements
constraint. Second, after obtaining a few NLDR, recovered
frames as training, a fast bilateral random projections (BR-
P) scheme is adopted for quick low-rank background initial-
ization. Third, we propose a scheme to recursively estimate
the low-rank background part and sparse object part in a
“frame-by-frame” fashion, where the proposed NLDR algo-
rithm can also be used for sparse component estimation.

The rest of the paper is organized as follows. Section
presents some related work on background subtraction, low-
rank and sparse modeling. Section [3] discusses the problem
formulation. Section[]introduces the proposed rLSDR algo-
rithm. The performance evaluation on three videos is given
in Section [5] Finally, we conclude in Section [6]

2. RELATED WORK

In [18], the authors first proposed to use Principal Com-
ponent Analysis (PCA) to model the background. Object
detection is then achieved by thresholding the difference be-
tween generated background image and the current image.
PCA provides a robust model of the probability distribution
function of the background, but not the moving objects [1].
The work in [9, |10] improved classical PCA with respect to
outlier and noise, yielding the field of robust PCA. Later on,
this was advanced by very recent works based on the idea
that the data matrix X can be decomposed into two com-
ponents such that X = L+ 5, where L is a low-rank matrix
and S is a matrix that is sparse. This decomposition can
be obtained by robust Principal Component Analysis (rP-
CA) solved via Principal Component Pursuit (PCP) 23] [4].
While PCP is an elegant solution, it suffers some practical
limitations. First, it requires the number of nonzero pixels
in the moving objects to be small (i.e., the object should be
exact sparse), this may not hold if there are large size or
multiple moving objects. Second, PCP is a batch method
and computationally expensive, it would be more useful to
quickly obtain the low-rank matrix and the sparse matrix
in an incremental way for each new frame and gradually
improve the estimates.

The bandwidth challenge in the network of surveillance cam-
eras was addressed by CS. The author in [14] proposed to re-
covery the CS measurements into low-rank and sparse com-
ponents and adopted the alternative direction method (AD-
M) for solving the optimization problem in a batch fashion.

ReProCS [19], an algorithm that addressed the limitation
in PCP by recursively projecting the CS recovered frame to
the subspace perpendicular to the subspace spanned by the
PC component to nullify the background. It then recovers
the sparse component by solving a noisy CS problem. Al-
though robust and can be implemented on-the-fly, it needed
to acquire the high accurate estimation of background PC
component (e.g., through PCA) to successfully nullify the
low-rank part in the data matrix. The performance could
easily be affected by the training process to obtain the PC
component.

3. PROBLEM FORMULATION

We consider a video sequence consisting of a number of
frames (i.e., images). Let a; € R™*™ be a vector formed
from pixels of frame t of the video sequence, fort =1,--- | T,
where T' is the total number of frames, m and n are the di-
mensions of each frame. The current frame x+, is an overlay
of foreground image, Fi, over the background image, B;.
The goal is to recover both F}; and B; at each time frame ¢
in real-time. Many foreground pixels are zero and hence F;
is a sparse matrix. We let T} denote the foreground support
set, i.e., Ty := {i : (Ft); # 0}. Thus,

(o2)s i { (F): ifieT a

(Bt)s otherwise

where i is the entry indices corresponding to the raster scan
order in the data matrix.

Let &, be an M x N measurement matrix, where M < N.
The measurement matrix ®; may be chosen as a random
Gaussian or Fourier Scrambled matrices [3]. In this paper,
we choose the ®; as a sparse binary measurement matrix
based on the expander graph 15| [16] which serves the same
purpose as the traditional CS measurement matrices but fur-
ther reduces the computation (e.g., only addition operations
on cameras) and the amount of measurements transmitted.

Assume, each frame can be re-arranged as an N X 1 vector
(i.e., N = m x n). The single frame CS measurements from
the video are defined as

Yyr = Prxe (2)

where y; is a vector of length M. To recover x; from g, first
ys is sparsely coded with respect to the basis & € RV*N by
solving the following minimization problem

& = argmin{|ly. — @ all3 + Xallal:} (3)
and then z; is reconstructed by z: = Wa.

Following the same notation in [19]. Let y; denote the mean
background image and let L; := By — ¢, and M; := ¢ be
the frame ¢ reconstructed from CS recovery algorithm (e.g.,
[8]) with mean subtracted. By defining

(St)' — (Fy = Bi)i = (Ft — pe — Lu)s
v 0  otherwise

we can formulate as a problem of recovering L; and S; from

ifi e Ty (4)

Mt = St + Lt (5)



Here, S: is a sparse vector with support set, 7%, and L
are dense matrices lie in a slowly changing low dimensional
subspace.

4. THE PROPOSED ALGORITHM

The proposed rLSDR algorithm consists of three major com-
ponents: (1) single frame recovery from CS measuremen-
t, (2) low-rank component initialization, and (3) recursive
recovery of sparse component and update of the low-rank
component.

4.1 Single Frame Recovery

The Iterative Soft Thresholding (IST) algorithm [§] can be
very efficient in solving the problem in Eq. , where the
processing is conducted in a block-by-block manner through
the same CS measurement operator. However, dividing the
frame into blocks and treating each block as an independen-
t sub-CS recovery task would inevitably lose some global
properties of the frame. Thus, we propose NLDR that takes
advantage of the nonlocal similar patches across the entire
frame to better recover the single frame under CS measure-
ments.

4.1.1 Nonlocal Similarity Patches

Buades et al. introduced in |2] the nonlocal means approach
to image denoising, where the self-similarities are used as a
prior on natural images. The basic idea of nonlocal means
(NL) filtering is simple. For a given pixel u; in a video frame
Z¢, its NL filtered new intensity value, denoted by NL(u;),
is obtained as a weighted average of its neighborhood pixels
within a search window of size w.

In our work, we extend the pixel-wise nonlocal filtering to
the patch-based filtering. Specifically, for a single video
frame ¢, we search for the nonlocal similar patches p; ;,j =
1,2,---,q, to the given patch p; in a large window of size
w centered at pixel u;. Here, ¢ is the total number of sim-
ilar patches to be selected. The weight of patch p; ; to pi,
denoted by wij, is then computed by

1=l w3
wij = ;ew(%), Jj=1-.,q (6)

where h is a pre-determined scalar and ¢; is the normal-
ization factor. Accordingly, for each patch p;, we have a
set of its similar patches, denoted by €2;. Then the non-
local estimates of each patch p; can be computed as p; =
Zjeﬂi wi;pi,j. Further, this can be written in a matrix form
as

wij, if x; €
Ai ~W A“ W ., N 7y 7 i 7
“ ZP (@9) {0, otherwise. (7)

where Z; is the nonlocal estimated single video frame output.

4.1.2  Patch Denoising by Low-rank Approximation

Although we can use Eq. to remove noise in the IST
recovered video frame Z; to a certain degree, this is based
on a weighted average of patches in &, which are inherently
noisy. Thus, it is imperative to apply some denoising tech-
niques before the nonlocal similar patches reweight using
Eq. to prevent the noise from accumulating. Formulat-
ing the nonlocal similarity patches into the matrix format,

we have B; = [ps,1;pi,2;," " ; Di,q), Where each column of B;
is a vector representation of p; j,7 = 1,2, -, q for patch p;.
Since all columns of B; share the similarity with the patch
pi, the columns of B; should bear a high degree of similarity
between each other, and subsequently, we can safely treat B;
as a low-rank matrix. If we treat B; as a noisy frame, then
the denoising process can be conducted by low-rank approx-
imation. We formulate the nonlocal patch denoising into the
low-rank matrix approximation problem [5] as follows

1 5 5
rr]1§1n§|\Bi*Bz‘Hng)\Bi“Bi”*: (8)

where || B; || is the nuclear norm of the low-rank approximat-

ed patch matrix B; defined by ||B;||. £ trace(\/ BZTBZ) =

>°2_, or, where o, are the singular values of B;.

In addition, since the columns of B; (or patches) are also a
subset of the reconstructed video frame from IST recovery
algorithm, it should be subjected to the CS measurement
constraint y; = ®,x¢. Therefore, we formulate the denoising
problem of Eq. by

.1
m1n§||1:t — WBl”% =+ Ax;”“z’t”* s.t. Yt = q)tl't- (9)
Tt

We adopt the Douglas-Rachford splitting method to solve

Eq. @

4.1.3 Douglas-Rachford Splitting

The Douglas-Rachford splitting method was originally pro-
posed in [12] for solving matrix equations. Later on it was
advanced as an iterative scheme to minimize the functions
of the form, min, F'(z) + G(x), where F and G are con-
vex functions for which one is able to compute the proximal
mappings prox,z and prox.; which are defined as

1
prox, () = argmin ||z — vl +7F(y)

The same definition applies to prox,q [6]. In order to solve
Eq. (8), we have F(z) = wc(z) and G(z) = ||z[|«, where
C = {z : y = @z} and (¢ is the indicator function.

Given that F(z) = tc(z), the solution to Eq. is the
same as projections onto convex sets (POCS), and does not
depend on .

prox.,, p(2) = prox, p(z) =z + @ (y — x),  (10)

where & = &7 (®®7)~!. The proximal operator of G(z) is
the soft thresholding of the singular values

prox,q(z) = U(x) - p, (S(2)) - V(2)" (11)

where © = U - S - V™ is the singular value decomposition
of the matrix x and S = diag(s;); is the diagonal matrix
of singular values s;, and py,(S) is defined as a diagonal
operator.

ox(S) = diag(max(0,1 — Az /|si])s:)s (12)
We can then solve the problem in Eq. using the Douglas-
Rachford iterations given by

Tr41 = (1 — %):I:k + grproxﬂ/G(rprOX,YF(ik)) (13)



and the (k + 1)-th solution #p4+1 is calculated by Zp41 =
prox., - (Zx+1). Here the reversed-proximal mappings is given
by rprox_p = 2prox p — x for F(x) and G(z) respectively.
The parameters are selected as A, > 0 and 0 < p < 2 which
guarantee & to be a solution that minimizes F(z) + G(z)
based on the proof in [7].

4.1.4 The Proposed NLDR algorithm

Algorithm [I] provides a pseudo-code for the proposed Non-
local Douglas-Rachford splitting (NLDR) algorithm. Given
the measurements y;, the NLDR algorithm first obtains an
intermediate reconstruction result Z;sr through the IST al-
gorithm [8]. This soft-thresholding output is then used to
calculate the nonlocal estimated frame Z,;. The final nonlo-
cal estimates is used to initialize the low-rank optimization
problem in Eq. where the Douglas-Rachford splitting
method will be carried out iteratively based on Eq. .

Algorithm 1: NLDR Algorithm
Input:

» CS Measurement matrix ®; €

» Basis matrix ¥ € RV*Y

» Measurements y; € RM

» Number of the iterations iter.
Output:

» An estimate 2; € RN of the original single frame x;.

RNIXN

Obtain an initial recovery Zrsr from IST [3§]
Initialize &p; < T1sT
Calculate nonlocal weights w;; using Eq.
Update &, <+ Wz; using Eq.
for £k =0,1,2,.-- ,iter do
Initialize Zg < T
Calculate Z+1 using Eq.
end for
return Z; < Tr+1

4.2 Low-rank Component Initialization

After denoising the CS recovered frame using NLDR, the
second component of the proposed rLSDR algorithm is to
estimate the low-rank background image based on the first
few video frames (e.g., around 50). In order to estimate the
background, a common approach would be applying SVD on
the recovered video frames to obtain its low-rank approxi-
mation. However, performing SVD operation is usually very
time-consuming, especially for large resolution video frames
which hinders the “on-the-fly” estimation. The other draw-
back is that, often we just need a rough estimation of the
low-rank component which can later be refined upon receiv-
ing new video frames.

In this work, we adopt the bilateral random projections (BR-
P) based low-rank approximation with closed-form solution.
Given r bilateral random projections of a p X ¢ dense matrix
X (wlo.g, p>q), ie., U= XA; and V = XT Ay, where
A; € R?”*" and Az € RP*"™ are random matrices,

L=UAsU)"'vT (14)

is a fast rank-r approximation of X. The L in Eq. has
been proposed in [13] as a recovery of a rank-r matrix X
from U and V, where A; and Ay are independent Gaus-
sian or subsampled Fourier random matrices. It was later
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Figure 1: Averaged per frame recover result comparison on
(a) Restaurant (b) Curtain.

advanced by Zhou et al. in [27] showed that L is a tight
rank-r approximation to a full rank matrix X, when A; and
As are correlated random matrices updated from Y2 and Y3,
respectively.

The computation of L includes an inverse of an r X r matrix
and three matrix multiplications. Thus, for a dense X, 2pqr
floating-point operations (flops) are required to obtain BRP,
r%(2q + ) + pgr flops are required to obtain L. The compu-
tational cost is much less than SVD based approximation.

4.3 Recursive Sparse Recovery and Low-rank
Updates

After the low-rank background component L; has been es-
timated, we now proceed to the third component of rLS-
DR, where we recursively update the sparse component and
background estimation upon receiving the CS measurements
y¢+1 of new frame x;y1. The CS recovered new frame &4 is
obtained using the proposed NLDR algorithm. The sparse
recovery problem to find S;4+1 can be formulated as follows

1
min ={|£41 — L — Sevll3 4+ Asl[Sev1lh
Str1 2

st [lyers — Pogr (Lo + Sera)|I5 < e

where L; is estimated background at the frame ¢. The only
unknown in Eq. is Si4+1. Again it can be solved using
NLDR algorithm to estimate Si41.

After the sparse component is obtained using Eq. (15)), the
corresponding low-rank background component at t+1 frame
can be calculated as Liy1 = 41 — St41. This single frame
background will be incorporated into Eq. to update L,
which is the initial trained background matrix. The final
low-rank background at frame ¢ + 1 is then estimated as
Ligi= L(t + 1) from the output of Eq. .

We summarize the proposed rLSDR in Algorithm [2]

S. EXPERIMENTAL RESULTS

We apply rLSDR to two surveillance videos EL i.e., Restau-
rant and Curtain. Curtain consists of 304 frames each of
dimension 64 x 80. Restaurant contains 200 frames with di-
mension 144 x 176. We first experiment on the single frame

1ht1:p ://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Algorithm 2: rLSDR Algorithm

Input:
» CS Measurement matrix ®; € RM*N
» Measurements data matrix y; € RM*?
» Initialize random matrices A1, Ao
» Number of training frames trn.
Output:
» CS recovered frames & € RN P, o
» Background and object estimate L, S.

1: Step 1: Initial frame recovery

2: fori=1,--- ,trn do

3:  X(1:trn) « NLDR(y;)

4: end for

5: Step 2: Background initialization

6: Estimate L using Eq.

7: Step 3: Recursive update L and S

8 fort=trn,--- ,pdo

9:  Frame recovery: Z+4+1 <~ NLDR(y¢41)

10:  Sparse est.: Solve Eq. for St+1 using NLDR
11: Calculate Lt+12 Lt+1 = Cfi’H_l — St+1, update Eq.
12:  Background est.: ﬁtH =L(t+1)

13: end for

14: return i,ﬁ,S'

recovery result by comparing NLDR with two popular CS
image recovery algorithms, BCS-SPL and TVNLR [26].

The block-based image patch is of size 6 x6. We set the num-
ber of similar patches ¢ in the nonlocal estimation step as
45. We use the scrambled Fourier matrix as the CS measure-
ment matrix & and DCT matrix as the basis ¥ to represent
the original image in the initial IST recovery. The parame-
ter is selected as ;1 = 1 for DR iteration and Ay = ﬁ‘(sl)
for each iteration where ¢; = Cp *¢,0 < € < 1 and Cp is a
constant.

Fig. [1] shows the averaged per frame recover result of NL-
DR compared with BCS-SPL and TVNLR using the PSNR
metric. Generally, NLDR outperforms the state-of-the-art
CS image recovery algorithm in the two video frames.

We then conduct experiments to compare the rLSDR on
background and object estimation. For each video sequence,
a number of frames, 150 for Curtain and 50 for Restaurant,
are selected as the training frames to initialize the back-
ground.

Fig. [2] shows the CS recovered frame on Restaurant with
background and object extracted. We also compare the re-
sult with PCP and ReProCS in Fig. |3| where the
NLDR recovery video frames are used as the batch input.
rLSDR could successful recover the background and the ob-
ject and performs better than PCP, while having similar re-
sult as ReProCS. Compared with ReProCS, rLSDR requires
much less initial training frames and thus less resource con-
sumptions.

6. CONCLUSION

Figure 2: First column: original Restaurant video frames at
t = 70, 116, 140. Second column: frame recovered by NL-
DR with 30% measurements. Next 2 columns: background
and object estimated by rLSDR.

In this paper, we presented rLSDR, a CS-based surveillance
video processing algorithm to recursively estimate the low-
rank background and sparse object. The spatial and tem-
poral low-rank features of the video frame were successfully
exploited. Capitalized on the self-similarities within each s-
patial frame, we proposed NLDR for the single frame CS re-
covery that had high recovery PSNR under various sampling
rates compared with the-state-of-art recovery algorithm. We
proposed rLSDR that recursively estimates the background
through efficient bilateral random projection (BPR). Exper-
imental results on three standard surveillance videos showed
that NLDR performs best for CS frame recovery and rLS-
DR could successfully recovery the background and sparse
object with less resource consumption.
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