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Background and Motivation
-fMRI

A non-invasive technique for studying brain activity.
During the course of an fMRI experiment, a series of brain images are
acquired while the subject performs a set of tasks.

Figure 1: Example of a fMRI course1.

1http://www.metinc.net/products/FMRI/products/img/fmri-sys.jpg
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Background and Motivation
-fMRI Data

Each image consists of 100,000 ’voxels’ (cubic volumes that span the
3D space of the brain). Each voxel corresponds to a spatial location
and has a number associated with it that represents its intensity.
During the course of an experiment several hundred images are
acquired (≈ one every 2s).
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Background and Motivation
-GLM Analysis

The General Linear Model (GLM) is a classical univariate approach
toward the detection of task-related activations in the brain.

Figure 2: Computing activations based on GLM.
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Background and Motivation
-Motivation

A typical fMRI dataset is usually composed of time series, the
blood-oxygenation-level-dependent (BOLD) signal, of tens of
thousands voxels. Such high volume has become quite a burden for
existing fMRI research. ⇒ Compressed Sensing
Prof. Daubechies, et al. 2 showed that the most influential factor for
the ICA algorithm is the sparsity of the components rather than
independence, and suggested to develop decomposition methods
based on the GLM where the BOLD signal may be regarded as a linear
combination of a sparse set of brain activity patterns. ⇒ Sparsity

2I. Daubechies, et. al ”Independent component analysis for brain fMRI does not
select for independence,” PNAS, 2009
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The General Linear Model (GLM)
General Linear Model (GLM) models the time series as a linear
combination of several different signal components and tests whether
activity in a brain region is systematically related to any of these
known input functions for each voxel in an fMRI imaging system.
The GLM for the observed response variable yj at voxel j,
j = 1, · · · , N , is given by:

yj = Xβj + ej (1)

where, yj ∈ RM with M being the number of scans, X ∈ RM×L
denotes the design matrix, βj ∈ RL represents the signal strength at
the j-th voxel, and ej ∈ RM is the noise.
Each column of the design matrix X is defined by the
task/stimulus-related function convolved with a hemodynamic
response function (HRF), typically either a gamma function or the
difference between two gamma functions.
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The General Linear Model (GLM)

Under GLM, various methods for estimating β may be used. The
Ordinary Least Squares (OLS) has been traditionally adopted where
no prior information is applied:

βj = (XTX)−1XT yj (2)

In order to identify columns of interests that corresponding to the
task-related design in the contribution of the BOLD signal, a contrast
vector c = [c1, c2, · · · , cL] is applied on the estimated coefficient β̂j
by cT β̂j .
This hypothesis testing is then performed on a voxel-by-voxel basis
using either a t-test or F-test. The resulting test statistic will then be
calculated and formatted in an image termed statistical parametric
map (SPM).
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A Motivating Example

We first give an illustration example on the result generated using CDL as
compared with existing algorithms based on fixed design matrix X.

In order to gain some insight on the performance of the OLS and
`0-LS (i.e., sparse decomposition but still using fixed design matrix)
and the proposed CDL approach when the parameter vector is sparse,
we generate some synthetic BOLD signal, as shown in Fig. 3
We model the fMRI time series z of a particular voxel as a sparse
linear combination of various stimuli and additive noise. That is,
z = Xα+ ε, where α is a sparse vector of length L = 13 and a
support 3 (i.e., only 3 entries in α are non-zero).
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A Motivating Example
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Figure 3: Solution of the inverse problem: z = Xα+ ε. Top: observed time
series z. Bottom: solutions obtained by OLS, OMP, and CDL; here � denotes the
original parameter vector and ◦ denotes the estimated solution. CDL uses 250
projected samples from z, the sparse solution is truncated to show only the first
13 entries in this case.GlobalSIP’14 Compressed Dictionary Learning for Detecting Activations in fMRI using Double Sparsity 10 / 25



A Motivating Example

OLS generates many entries that are not sparse.
`0-LS, implemented using OMP, successfully detects the right support
of the sparse signal, but it fails to estimate the contribution of the
stimuli, α.
For the proposed CDL method, a compressed measurement matrix
Φ ∈ R250×500 is randomly generated as Gaussian random matrix, and
a dictionary D ∈ R500×500 is obtained from the design matrix X.
CDL then generates a sparse estimation of α with 500 entries.
We observe that CDL does correctly identify the sparse support as
well as contributions of the stimuli.
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CDL - Problem Formulation
-List of notations

Table 1: List of variable notations.

YM×N BOLD signal of N voxels
DM×p The dictionary of p atoms
Ap×N Set of N coefficient vectors
QK×N Set of N projected measurements
ΦK×M The measurement matrix
ΨM×M The basis for the dictionary D
ΘM×p Set of p sparse coefficient vectors
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CDL - Problem Formulation
Contrary to the design matrix X in the GLM approach, the dictionary learning approach
tries to learn a dictionary D ∈ RM×p and its corresponding coefficient matrix A ∈ Rp×N

as follows:

min
D,A
{

1
2
‖Y −DA‖22 + λA‖A‖1} (3)

This can be efficiently solved by recursively updating the sparse coefficients A and the
dictionary D 3.
First, given the BOLD signal Y , an intermediate sparse approximation with respect to the
dictionary D(t−1) from step t− 1 is computed by solving the following LASSO problem:

min
A(t)
{

1
2
‖Y −D(t−1)A(t)‖22 + λA‖A(t)‖1} (4)

The dictionary is subsequently updated to minimize the representation error while A(t) is
fixed:

D(t) = arg min
D(t)
{

1
2
‖Y −D(t)A(t)‖22} (5)

3J. Mairal et al., ”Online dictionary learning for sparse coding,” in Proc. of the 26th Annual
Intl. Conf. on Machine Learning. 2009
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CDL - Problem Formulation

Since the BOLD signal Y is of high volume, in this work, we are
interested in the case where only a linear projection of Y onto a
measurement matrix Φ is available.
Then the dictionary update step in Eq. (5) becomes the following
under-determined problem:

min
D(t)
{1

2‖Q− ΦD(t)A(t)‖22}, s.t. Q = ΦY (6)

which does not have unique solution for D(t) for a CS measurement
matrix Φ ∈ RK×M which has less rows than columns.
In what follows, we will discuss how to add additional sparse structure
constraint on the dictionary D to help us solve Eq. (6).
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Sparse Dictionary Model

The sparse dictionary model suggests that each atom of the
dictionary has itself a sparse representation over some prespecified
base dictionary Ψ 4. The dictionary is therefore expressed as:

D = ΨΘ (7)

where Ψ ∈ RM×M is the basis and Θ is the atom representation
matrix, assumed to be sparse.
The dictionary model in Eq. (7) provides adaptability via the sparse
matrix Θ, which can be viewed as an extension to the existing
dictionaries, adding a new layer of adaptivity.

4R. Rubinstein et al., ”Double sparsity: Learning sparse dictionaries for sparse signal
approximation,” IEEE Trans. on Signal Processing, 2010
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Sparse Dictionary Model

By substituting the D = ΨΘ with a sparse Θ, Eq. (3) now becomes:

min
D,Θ
{1

2‖Y −ΨΘA‖22 + λA‖A‖1 + λΘ‖Θ‖1} (8)
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The proposed CDL approach
There are two steps in the CDL algorithm. In the sparse coding step,
the dictionary D(t−1) is fixed and obtained from the previous
iteration. The sparse coefficient A(t) can be obtained by minimizing
the following problem:

min
A(t)
{1

2‖Q− ΦD(t−1)A(t)‖22 + λA‖A(t)‖1} (9)

Optimizing over A(t) is straightforward LASSO problem. While in the
dictionary update step, the optimization problem becomes:

min
Θ(t)
{1

2‖Q− ΦΨΘ(t)A(t)‖22 + λΘ‖Θ(t)‖1 (10)

Here, optimizing over Θ(t) is not directly LASSO which requires the
following Lemma to reformulate into the standard LASSO problem.
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The proposed CDL approach
Lemma
Let Q ∈ RK×N and Φ ∈ RK×M be two matrices, and u ∈ RM and v ∈ RN be two vectors.
Also assume that vT v = 1. Then the following holds [12]:

‖Q− ΦuvT ‖22 = ‖Qv − Φu‖22 + f(Q, v). (11)

Based on Lemma 1, each column of Θ(t), denoted as θ(t)
j , in Eq. (10) can be solved by

the following LASSO-like problem:

θ
(t)
j = arg min

θ
(t)
j

{
1
2
‖E(t)

θj
a

(t)
j

T
− ΦΨθ(t)

j ‖
2
2 + λΘ‖θ

(t)
j ‖1} (12)

where E(t)
θj

is the projected estimation error associated with the dictionary atom θj and

a
(t)
j is the j-th column of matrix A(t) as follows:

E
(t)
θj

:= Q−
p∑

i=1,i,j

Φθ(t−1)
i a

(t)
j (13)
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Experimental Results
-Experiments Settings

We demonstrate the result comparison on activation detection using
the GLM with a design matrix and the CDL with a learnt dictionary.
We use the dataset from Pittsburgh Brain Activity Interpretation
Competition 2007 (PBAIC 2007) 5

In this experiment, we use the preprocessed data where slice time
correction, motion correction and detrending have been performed on
the functional and structural data using NeuroImage software (AFNI).
A fixed period is extracted from the preprocessed dataset leading to a
total of 500 volumes in each run.

5http://pbc.lrdc.pitt.edu/
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Experimental Results
-Experiments Settings (cont’d)

For the design matrix X, the first 13 columns of X are constructed
by considering the thirteen convolved stimuli/task function that are
part of the features set provided by PBAIC 20076, done by the SPM
software package7. We also add one column of all ones that models
the whole brain activity.
The design matrix X ∈ R500×14 is then used in SPM to generate the
activation maps for comparison purpose.

6
http://www.lrdc.pitt.edu/ebc/2007/docs/CompetitionGuideBook2007v7.pdf

7
http://www.fil.ion.ucl.ac.uk/spm/
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Experimental Results
-Experiments Settings (cont’d)

The measurement matrix is randomly generated using the Gaussian
i.i.d measurement matrix with the CS measurement ratio set as 0.5.
The basis Ψ for the dictionary is randomly generated using DCT
coefficients, with the first 13 columns from the design matrix X used
in SPM, and p = 500.
We set λA = λΘ = 0.1, and use the SPAMS software package 8 for
solving the LASSO. Fig. 4 shows the activation maps from both
methods, while the detailed comparisons are listed in Table 2.

8http://spams-devel.gforge.inria.fr/
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Experimental Results

Figure 4: Activation maps for the Instructions task. Top: results generated using
SPM with design matrix X ∈ R500×14, Bottom: results generated using CDL
method, with Gaussian measurement matrix Φ ∈ R250×500 and a learnt dictionary
D ∈ R500×500. Slice number from left to right are 13, 14, 15, and 16 in both rows.
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Experimental Results

Activated slice indices
(totally 34 slices)

Avg. slice-wise
matches (%)

Avg. voxel-wise
matches (%)

SPM 5-22 83.33% 50.14%CDL 3, 4, 8-22

Table 2: Detected activations comparison of SPM and CDL.
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Conclusion

In this paper, we presented CDL, a compressed dictionary learning
approach for detecting activations in fMRI data. The double sparsity
model was applied in solving the inverse problem induced by the
general linear model in the analysis, where sparsity was imposed on
both the learnt dictionary and the sparse representation of the BOLD
signal.
Compressed sensing measurements were used for learning the
dictionary instead of the entire BOLD signal and thus reducing the
data volume to be processed.
Experimental results on real fMRI data demonstrated that CDL could
successfully detect the activated voxels similar to the results generated
by the SPM software but with much less data samples used.
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Thank you!
Any questions?
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