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ABSTRACT

Hyperspectral images consist of large number of spectral
bands but many of which contain redundant information.
Therefore, band selection has been a common practice to
reduce the dimensionality of the data space for cutting down
the computational cost and alleviating from the Hughes phe-
nomenon. This paper presents a new technique for band
selection where a sparse representation of the hyperspectral
image data is pursued through an existing algorithm, K-SVD,
that decomposes the image data into the multiplication of
an overcomplete dictionary (or signature matrix) and the co-
efficient matrix. The coefficient matrix, that possesses the
sparsity property, reveals how importantly each band con-
tributes in forming the hyperspectral data. By calculating
the histogram of the coefficient matrix, we select the topK
bands that appear more frequently than others to serve the
need for dimensionality reduction and at the same time pre-
serving the physical meaning of the selected bands. We refer
to the proposed band selection algorithm based on sparse
representation as SpaBS. Through experimental evaluation,
we first use synthetic data to validate the sparsity property
of the coefficient matrix. We then apply SpaBS on real hy-
perspectral data and use classification accuracy as a metric
to evaluate its performance. Compared to other unsupervised
band selection algorithms like PCA and ICA, SpaBS presents
higher classification accuracy with a stable performance.

Index Terms— Band selection, Sparse representation,
Hyperspectral imaging, Image classification

1. INTRODUCTION

Hyperspectral images have been proven beneficial to many
different applications, including remote sensing, medical
imaging, and quality assurance, to name but a few. Modern
remote sensors are producing hyperspectral images which
sample hundreds of contiguous narrow spectral bands. How-
ever, the challenging problems, like the heavy computational
load and the Hughes phenomenon [1], also arise due to the
resulting high-dimensional data sets. Band selection is an
alternative way to conquer these problems. Unlike feature
extraction, band selection tries to identify a subset of original

bands through some search strategy and evaluation criterion
while keeping the physical meanings of bands unchanged.
Therefore, it is generally more preferable.

Fourier, Wavelet, Discrete Cosine transformation, etc.
have been widely used in signal and image processing, where
by changing the basis of the signal space, these transform
domain processing methods can better separate noise from
salient features to facilitate feature detection, segmentation,
classification and to reduce computational requirements. In-
spired by recent work in compressive sensing [2], we propose
a technique that transforms the hyperspectral data into a
specifically designed basis, maintaining fewest large coeffi-
cients and many small or zero coefficients; thus, the hyper-
spectral data is sparse represented. Sparse representations
have increasingly become recognized as providing extremely
high performance for applications as diverse as noise reduc-
tion, feature extraction, pattern classification and blindsource
separation. The aim of this transformation is to reveal certain
structures of an image and to represent these structures in
a compact and sparse representation. Figure 1 uses cuprite
image data [3] with totally 188 bands at pixel coordinate
(1, 2). The x-axis is the spectral wavelength for totally 188
bands and y-axis is the spectral reflectance in the spatial do-
main (for Fig. 1(a)) or coefficients in the transformed domain
(for Fig. 1(b-d)). We see that Fourier coefficients and Haar
wavelet coefficients both enjoy a high level of sparsity.

In this paper, we present a sparse representation based
method for band selection, referred to as SpaBS. The algo-
rithm first finds a sparse representation of the hyperspectral
image data and then a band ranking criterion using majority
voting is applied to the coefficient matrix obtained by setting
specific sparsity level. The proposed method avoids trans-
forming the original hyperspectral images to a feature space
on which a physical interpretation is not possible. Instead, it
tries to gain the large absolute weight coefficients of individ-
ual spectral bands and selects the interested bands which con-
tain the maximum information, thereby reducing the dimen-
sionality but retaining most spectral features of hyperspectral
images. A novel K-SVD algorithm [4] that generalizing the
K-Means clustering processing is adopted in order to achieve
sparse representation of hyperspectral data.

The rest of the paper is organized as follows. Section II
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Fig. 1. Transformation of Cuprite image data at pixel coordi-
nate (1,2) (a) Original reflectance (upper-left) (b) reflectance
transformed by Fourier transformation (upper-right) (c) re-
flectance transformed by Haar wavelet transformation (lower-
left) (d) reflectance transformed by taking derivative of origi-
nal image (lower-right).

introduces related work in band selection for hyperspectral
image data. Section III reviews the sparse representation of
a signal and the K-SVD algorithm. Section IV presents the
sparse representation based band selection (SpaBS) method.
Various experiments are conducted in Section V to evaluate
the performance of SpaBS compared to other selection meth-
ods and conventional feature extraction methods. Section VI
concludes the paper.

2. RELATED WORK

For many years, the design of efficient and robust feature ex-
traction and feature selection, especially band selection, al-
gorithms has been the most important issue addressed by the
remote sensing community. Strong efforts have been devoted
to elaborate new band selection algorithms and improve tech-
niques used to reduce dimensionality.

From the selection metric point of view, the band selection
algorithms can be categorized into two classes. One class is
based on information-theoretic measures, such as entropy and
combined entropy, covariance matrix of combined bands [5].
The other class is based on separability of the same classes,
such as dispersibility, standard distance between mean values,
B distance, and so on [6,7].

While all these methods try to utilize the existing infor-
mation in the given spectral bands to find the relation be-
tween bands and make them distinguishable, most recently,
there has been research focusing on transfer domain process-
ing to attain desirable features. In [8], characterizations in the
frequency domain are presented and a very small number of
hyperspectral bands are needed to perform classification.

In this paper, we present a sparse representation based
band selection (SpaBS) method that maps the bands into a

non-physical domain that enjoys the properties of noise re-
duction, compression yet preserving the most salient infor-
mation desired. SpaBS uses the Sparse Representation which
describes the importance of different spectral bands as the
weighted index, and then uses the sparsity level and major-
ity rule as the band selection criteria.

3. SPARSE REPRESENTATION AND K-SVD
ALGORITHM

The problem of finding the sparse representation of a signal
in a given overcomplete dictionary can be formulated as fol-
lows. Given anL × K matrix A containing the elements of
an overcomplete dictionary in its columns, withL > K and
usuallyL ≫ K, and a signaly ∈ RL, the problem of sparse
representation is to find anK × 1 coefficient vectorx, such
thaty = Ax and||x||0 is minimized, i.e.,

x = min
x′
||x′||0 s.t. y = Ax (1)

where ||x||0 is the l0 norm and is equivalent to the number
of non-zero components in vectorx. Finding the solution
to Eq. 1 is NP hard due to its nature of combinational opti-
mization. Suboptimal solutions to this problem can be found
by iterative methods like the matching pursuit and orthogo-
nal matching pursuit. An approximate solution is obtained by
replacing thel0 norm in Eq. 1 with thel1 norm, as follows:

x = min
x′
||x′||1 s.t. y = Ax (2)

where ||x||1 is the l1 norm. In [9], it is proved that if cer-
tain conditions on the sparsity is satisfied, i.e., the solution is
sparse enough, the solution to Eq. 1 is equivalent to the solu-
tion to Eq. 2, which can be efficiently solved by basis pursuit
using linear programming. A generalized version of Eq. 2,
which allows for certain degree of noise, is to findx such that
the following objective function is minimized:

J1(x; λ) = ||y − Ax ||22 + λ||x||1 (3)

where the parameterλ is a scalar regularization parameter that
balances the tradeoff between reconstruction error and spar-
sity.

In this paper we adopt the K-SVD algorithm - a general-
ization of the k-means algorithm, to obtain the sparse repre-
sentation of the hyperspectral image data, in an unsupervised
manner. A detailed description of the algorithm can be found
in [4].

4. SPARSITY BASED BAND SELECTION
ALGORITHM

In this section, the proposed SpaBS algorithm is introduced.
Suppose the spatial dimension of the hyperspectral image
data is M × N and the spectral dimension isL, then we



construct the observation matrixY = [y1, · · · , yMN ] where
yi, i = 1, · · · ,MN is anL-dimensional column vector, repre-
senting the spectral reflectance of each pixel. We apply the
K-SVD algorithm to calculate a basis (or the dictionary),A
of L × L dimension, and the coefficient matrix,X of L × MN
dimension, corresponding to that basis. That is,

YL×MN = AL×LXL×MN .

Note that different from the description in Sec. 3 where
A is an overcomplete dictionary, for band selection purpose,
we need to setA as a square matrix ofL × L dimension, thus
the coefficient matrixX would be of the same dimension as
the original hyperspectral image, i.e.,L × MN. The reason
for doing this would become clear through the following de-
scription of the analysis algorithm of the coefficient matrix
X.

SinceX is derived with the sparsity constraint, most of
entries inX would be equal to or very close to zero. Each col-
umn of the coefficient matrix indicates how importantly that
each basis contributes in forming each column of the original
hyperspectral image. A larger coefficient inX would mean
where the majority information resides. For each column of
the coefficient matrix, we selectK largest entries out of theL
coefficients and calculate the histogram of the corresponding
indices of the keptK entries. Here,K is defined byK = δs×L
whereδs is a pre-defined sparsity level. In our experimental
setup, we intentionally increaseδs slightly to account for mi-
nor information.

Algorithm 1 Sparsity based band selection (SpaBS) algo-
rithm
Input:

L-band hyperspectral imageY in RL×MN ;
Sparsity levelδs;

Output:
K-band hyperspectral image;

1: Apply K-SVD algorithm onY to obtain the coefficient
matrixX, X = [x1, · · · , xMN ];

2: Sortxi in the descending order,i ∈ [1, · · · ,MN];
3: SetK equal toδs×L, select firstK entries in each column

of X and use the corresponding indices to form matrix
X s, X s ∈ R

K×MN ,K ≪ L;
4: Calculate the histogram of matrixX s that indicates how

frequently each band appears inX s;
5: SelectK indices that appear more often according to the

histogram and keep the correspondingK spectral bands
from the original image data;

6: return K-band hyperspectral image data.

5. EXPERIMENTS

5.1. Experimental Results Using Synthetic Data

We first use synthetic data to test the capability of the K-SVD
algorithm in generating the relevant bands of which most are
sparse. We select 5 signature profiles representing five inde-
pendent materials from [10]. Each signature profile is of 100
dimension. That is, the signature matrix or the dictionary is
of 100× 5 dimension. We then generate a sparse coefficient
matrix of 5× 3, 364 dimension. By multiplying the signature
matrix and the coefficient matrix, we construct the synthetic
hyperspectral image of 100-band with a 58×58= 3, 364 spa-
tial resolution. We apply the SpaBS algorithm and set the
sparsity level to 5%. Table 1 shows the selected bands and
their histogram in descending order. Figure 2 also shows that
five bands out of 100 were successfully selected and the coef-
ficients map are exactly the same. We can see that as long as
the data enjoys some level of sparsity, the SpaBS algorithm
could find a sparse representation of the data and obtain ma-
jority of the information at the same time.

Band Number 61 2 1 9 3 4
Histograms 222 178 177 176 166 64

Table 1. Selected bands and its histogram

Fig. 2. (Top) The five 58× 58 coefficients map to construct
the original synthetic data, (bottom) coefficients map corre-
sponding to five selected bands using the SpaBS algorithm.
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Fig. 3. Classification rate with different sparsity levels.

5.2. Experimental Results Using Real Hyperspectral
Scene

The image used here is the 92AV3C image from the NASA
Jet Propulsion Laboratory, which consists of 145 by 145 pix-
els at 224 spectral bands. Four of the 224 spectral bands in
the 92AV3C image contain zero values leaving a total of 220
non-zero bands. This image was chosen because it includes
the necessary ground truth reference data needed for classifi-
cation and accuracy assessments.

We apply thek-NN classifier to evaluate the performance
of SpaBS using the classification rate. The parameterk1 is set
to 10. We have also tested other selection ofk but found no
major difference in classification accuracy. A 10-fold cross
validation is adopted on the 10,366 pure pixels in one band.
The classification results of various dimensionality reduction
algorithms with different sparsity levels and compared andthe
results are shown in Fig. 3.

From Fig. 3, we could see that the SpaBS algorithm
outperforms ICA overwhelmingly and catches up with PCA
when the number of selected bands increases to around 12.
While the classification rate of PCA+LDA is slightly higher
than SpaBS when the number of bands is small, the perfor-
mance is not stable. After increasing the number of bands to
30, SpaBS obtains higher classification rate with stability.

6. CONCLUSION

In this paper, we presented a sparse representation based band
selection algorithm. Through experiments conducted on both
synthetic and real image data, we observed that sparsity based

1Not to be confused with CapitalK, which is number of bands selection
in the context.

algorithm can keep important information in the original im-
age to obtain satisfactory classification purpose, while atthe
same time preserving the physical meaning of the kept infor-
mation. Through sparse representation, SpaBS provides more
stable performance and has the potential of handling noise,
missing data, and outliers.
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