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ABSTRACT bands through some search strategy and evaluation cnterio
Hyperspectral images consist of large number of spectr hile keeping the physical meanings of bands unchanged.

bands but many of which contain redundant information. herefofe' itis generally_ more preferable. .
Therefore, band selection has been a common practice to Fourier, Wavelet, Discrete Cosine transformation, etc.
reduce the dimensionality of the data space for cutting dow&avehbeer_l W'?ﬁly gse.d mfslgnal _and I|mage pr;)r::essTg, wfhere
the computational cost and alleviating from the Hughes phe-y changing the basis ol the signal space, these transiorm
nomenon. This paper presents a new technique for ba main processing methods can better separate noise from

selection where a sparse representation of the hyperapect?al'ent features to facilitate feature detection, segatent,

image data is pursued through an existing algorithm, K-SVD?Iass'f'Cat'on and to re_zduce comp_utatmna! requiremennts. |
that decomposes the image data into the multiplication 0§p|red by recent work in compressive sensing [2], we propose

an overcomplete dictionary (or signature matrix) and the co? teghmque thgt transforms the h_yperspectral data.mto a
efficient matrix. The coefficient matrix, that possesses thé_pemflcally designed basis, maintaining fewest largefcoef

sparsity property, reveals how importantly each band cordients and many small or zero coefficients; thus, the hyper-

spectral data is sparse represented. Sparse represesitatio

tributes in forming the hyperspectral data. By calculatingh ) inalv b od i i |
the histogram of the coefficient matrix, we select the kop ave increasingly become recognized as providing extieme
h performance for applications as diverse as noise reduc

bands that appear more frequently than others to serve tt' foat tracti " lassificati d béiod
need for dimensionality reduction and at the same time prelon’ eature extraction, pattern ciassification and banurce

serving the physical meaning of the selected bands. We ref§fparation. The am of this transformationis to reveaktart .
to the proposed band selection algorithm based on Spargguctures of an image and to rep_resent_these structures in
representation as SpaBS. Through experimental evalyatiofl compact and sparse representation. Flgu_re 1 uses_cupnte
we first use synthetic data to validate the sparsity propert mage data [3] \.N't.h totally 188 bands at pixel coordinate
of the coefficient matrix. We then apply SpaBS on real hy- 1,2). The X-axis I the spectral Wavelength for totaIIy. 188
perspectral data and use classification accuracy as a met hds and y-axis is the spectral reflectance in the spatial do

to evaluate its performance. Compared to other unsupervis{:ain (for Fig. 1(a)) or coefficients in the transformed damai
t

band selection algorithms like PCA and ICA, SpaBS presen or Fig. 1(b-d)). We see that Fourier coefficients and Haar

higher classification accuracy with a stable performance. wavelet f:oefnments both enjoy a high level of sparsﬂy.
In this paper, we present a sparse representation based

Index Terms— Band selection, Sparse representationmethod for band selection, referred to as SpaBS. The algo-

Hyperspectral imaging, Image classification rithm first finds a sparse representation of the hypersgectra
image data and then a band ranking criterion using majority
1. INTRODUCTION voting is applied to the coefficient matrix obtained by sefti

specific sparsity level. The proposed method avoids trans-
Hyperspectral images have been proven beneficial to marfgrming the original hyperspectral images to a feature spac
different applications, including remote sensing, meldicaon which a physical interpretation is not possible. Instéad
imaging, and quality assurance, to name but a few. Modertries to gain the large absolute weight coefficients of iftiv
remote sensors are producing hyperspectral images whichal spectral bands and selects the interested bands wiieh co
sample hundreds of contiguous narrow spectral bands. Howain the maximum information, thereby reducing the dimen-
ever, the challenging problems, like the heavy computation sionality but retaining most spectral features of hypersjaé
load and the Hughes phenomenon [1], also arise due to thmages. A novel K-SVD algorithm [4] that generalizing the
resulting high-dimensional data sets. Band selection is ak-Means clustering processing is adopted in order to aehiev
alternative way to conquer these problems. Unlike featureparse representation of hyperspectral data.
extraction, band selection tries to identify a subset djiall The rest of the paper is organized as follows. Section Il



non-physical domain that enjoys the properties of noise re-
o /-/\\\ " duction, compression yet preserving the most salient infor
. mation desired. SpaBS uses the Sparse Representation which
' describes the importance of different spectral bands as the
* weighted index, and then uses the sparsity level and major-

TP e T P Peraremson ity rule as the band selection criteria.
* - 3. SPARSE REPRESENTATION AND K-SVD
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Mo e e e wmow b w Byni?.‘iat.vel““ 200 The problem of finding the sparse representation of a signal

in a given overcomplete dictionary can be formulated as fol-

. ) L i _lows. Given anL x K matrix A containing the elements of
Fig. 1. Transformation of Cuprite image data at pixel coord|-an overcomplete dictionary in its columns, with> K and

nate (1,2) (a) Original reflectance (upper-left) (b) refiece usuallyL > K, and a signay € R*, the problem of sparse

transformed by Fourier transformation (upper-right) €) r representation is to find a x 1 coefficient vectox, such
flectance transformed by Haar wavelet transformation (fewe thaty = Ax and||xllo is minimized, i.e.,

left) (d) reflectance transformed by taking derivative aor
nal image (lower-right). X =min|[x|lo st. y = AX (1)
X

where||X||o is thelp norm and is equivalent to the number

introduces related work in band selection for hyperspectrdf Non-zero components in vectar Finding the solution
image data. Section IIl reviews the sparse representafion & Ed- 1 is NP hard due to its nature of combinational opti-
a signal and the K-SVD algorithm. Section IV presents themization. Suboptimal §o|ut|ons to th_ls problem can be found
sparse representation based band selection (SpaBS) methBY iterative methods like the matching pursuit and orthogo-
Various experiments are conducted in Section V to evaluatB@ matching pursuit. An approximate solution is obtaingd b
the performance of SpaBS compared to other selection metf€Pacing theo normin Eq. 1 with thé; norm, as follows:

ods and conventional feature extraction methods. Section V

concludes the paper. X = min|x|lx st. y = AX @)

where||x||; is thel; norm. In [9], it is proved that if cer-
2. RELATED WORK tain conditions on the sparsity is satisfied, i.e., the smiuis
. o sparse enough, the solution to Eq. 1 is equivalent to the solu
For many years, the design of efficient and robust feature exon to Eq. 2, which can be efficiently solved by basis pursuit
traction and feature selection, especially band selecibn ysing linear programming. A generalized version of Eg. 2,

gorithms has been the most important issue addressed by th@ich allows for certain degree of noise, is to fiduch that
remote sensing community. Strong efforts have been devotgfe following objective function is minimized:

to elaborate new band selection algorithms and improve tech

nigues used to reduce dimensionality. Ji(x; 2) = |ly — Ax|I2 + Allxly 3)
From the selection metric point of view, the band selection

algorithms can be categorized into two classes. One class \¥here the parametaris a scalar regularization parameter that

based on information-theoretic measures, such as entrmpy abalances the tradeoff between reconstruction error and spa

combined entropy, covariance matrix of combined bands [5]Sity-

The other class is based on separability of the same classes, In this paper we adopt the K-SVD algorithm - a general-

such as dispersibility, standard distance between meaesal ization of the k-means algorithm, to obtain the sparse repre
B distance, and so on [6, 7]. sentation of the hyperspectral image data, in an unsugetvis

While all these methods try to utilize the existing infor- manner. A detailed description of the algorithm can be found

mation in the given spectral bands to find the relation beln [4].

tween bands and make them distinguishable, most recently,

there has been research focusing on transfer domain process 4. SPARSITY BASED BAND SELECTION

ing to attain desirable features. In [8], characterizatiorthe ALGORITHM

frequency domain are presented and a very small number of

hyperspectral bands are needed to perform classification. In this section, the proposed SpaBS algorithm is introduced
In this paper, we present a sparse representation bas8dppose the spatial dimension of the hyperspectral image

band selection (SpaBS) method that maps the bands intodata isM x N and the spectral dimension Ils then we



construct the observation matrik = [y1,---,ymn] Where 5. EXPERIMENTS
yi,i = 1,---,MN is anL-dimensional column vector, repre-
senting the spectral reflectance of each pixel. We apply th
K-SVD algorithm to calculate a basis (or the dictionar),

of L x L dimension, and the coefficient matrix,of L x MN
dimension, corresponding to that basis. That is,

5.1, Experimental Results Using Synthetic Data

We first use synthetic data to test the capability of the K-SVD
algorithm in generating the relevant bands of which most are
sparse. We select 5 signature profiles representing five inde
Y LxMN = ALxL XLxMN- pendent materials from [10]. Each signature profile is of 100
dimension. That is, the signature matrix or the dictionary i
of 100x 5 dimension. We then generate a sparse coefficient
Note that different from the description in Sec. 3 wherematrix of 5x 3, 364 dimension. By multiplying the signature
A is an overcomplete dictionary, for band selection purposematrix and the coefficient matrix, we construct the syntheti
we need to seA as a square matrix @f x L dimension, thus hyperspectral image of 100-band with 688 = 3, 364 spa-
the coefficient matrixX would be of the same dimension as tial resolution. We apply the SpaBS algorithm and set the
the original hyperspectral image, i.&.x MN. The reason sparsity level to 5%. Table 1 shows the selected bands and
for doing this would become clear through the following de-their histogram in descending order. Figure 2 also showis tha
scription of the analysis algorithm of the coefficient mwatri five bands out of 100 were successfully selected and the coef-
X. ficients map are exactly the same. We can see that as long as

SinceX is derived with the sparsity constraint, most of € data enjoys some level of sparsity, the SpaBS algorithm
entries inX would be equal to or very close to zero. Each col-could find a sparse representation of the data and obtain ma-

umn of the coefficient matrix indicates how importantly that!°rity of the information at the same time.

each basis contributes in forming each column of the orlgina

hyperspectral image. A larger coefficientXhwould mean Band Numberl 61 2 1 9 3 4
where the majority information resides. For each column of Histograms | 222 178 177 176 166 64
the coefficient matrix, we seleét largest entries out of thie
coefficients and calculate the histogram of the correspandi Table 1. Selected bands and its histogram
indices of the kepK entries. HereK is defined byK = §sx L
whereds is a pre-defined sparsity level. In our experimental
setup, we intentionally increaseg slightly to account for mi-
nor information.

Algorithm 1 Sparsity based band selection (SpaBS) algo ,,

rithm

Input:
L-band hyperspectral imagein R>MN;
Sparsity levebs;

OUtpUtZ 1020304050 1020304050 1020304050 1020304050 1020304050
K'band hypel’SpeCtra| image; Coefficients map of arigin 5 bands

30

40

50

Band 61 Band 2 Band 1 Band 9 Band 3

1: Apply K-SVD algorithm onY to obtain the coefficient 1o
matrix X, X = [Xg, -+, Xmn]; 58

2: Sortx; in the descending ordédre [1,--- , MN];

3: SetK equal tossx L, select firsK entries in each column
of X and use the corresponding indices to form matrix
Xs, Xs € ROMN K <« L; y

4: Calculate the histogram of matriks that indicates how 1020504050 '0203%40'5#9, t '02'03040'5‘; d5b'°:°3°4°5° 1020904050
frequently each band appears{g; erneE e o seleree A

5. SelectK indices that appear more often according to theF_ 2 (Tob) The five 58 58 fici
histogram and keep the correspondkgpectral bands h'g' " (_ 0'?) eh ve q bcoe 'C'e”tsﬁr.“‘f*p to construct
from the original image data: the original synthetic data, (bottom) coefficients map eorr

6 return K-band hyperspectral image data sponding to five selected bands using the SpaBS algorithm.

30




Comparison of different bands reduction methods
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Fig. 3. Classification rate with different sparsity levels.

5.2. Experimental Results Using Real Hyperspectral
Scene

algorithm can keep important information in the originatim
age to obtain satisfactory classification purpose, whilhat
same time preserving the physical meaning of the kept infor-
mation. Through sparse representation, SpaBS provides mor
stable performance and has the potential of handling noise,
missing data, and outliers.
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The image used here is the 92AV3C image from the NASA
Jet Propulsion Laboratory, which consists of 145 by 145 pix-
els at 224 spectral bands. Four of the 224 spectral bands if5] A. Martinez-Uso, F. Pla, P. Garcia-Sevilla, and J.M: So
the 92AvV3C image contain zero values leaving a total of 220

non-zero bands. This image was chosen because it includes

the necessary ground truth reference data needed forfelassi

cation and accuracy assessments.

We apply thek-NN classifier to evaluate the performance

of SpaBS using the classification rate. The paraniétarset
to 10. We have also tested other selectioik bfit found no

[6]
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